Andrew Y. Joe, L. Jauregui, Kateryna Pistunova, Andrés M. Mier Valdivia, Zhengguang Lu, D. Wild, Giovanni Scuri, K. De Greve, Ryan J. Gelly, You Zhou, J. Sung, A. Sushko, T. Taniguchi, Kenji Watanabe, D. Smirnov, M. Lukin, Hongkun Park, P. Kim
{"title":"原子薄发光二极管中单线态和三重态激子的电控发射","authors":"Andrew Y. Joe, L. Jauregui, Kateryna Pistunova, Andrés M. Mier Valdivia, Zhengguang Lu, D. Wild, Giovanni Scuri, K. De Greve, Ryan J. Gelly, You Zhou, J. Sung, A. Sushko, T. Taniguchi, Kenji Watanabe, D. Smirnov, M. Lukin, Hongkun Park, P. Kim","doi":"10.1103/PhysRevB.103.L161411","DOIUrl":null,"url":null,"abstract":"Excitons are composite bosons that can feature spin singlet and triplet states. In usual semiconductors, without an additional spin-flip mechanism, triplet excitons are extremely inefficient optical emitters. Transition metal dichalcogenides (TMDs), with their large spin-orbit coupling, have been of special interest for valleytronic applications for their coupling of circularly polarized light to excitons with selective valley and spin$^{1-4}$. In atomically thin MoSe$_2$/WSe$_2$ TMD van der Waals (vdW) heterostructures, the unique atomic registry of vdW layers provides a quasi-angular momentum to interlayer excitons$^{5,6}$, enabling emission from otherwise dark spin triplet excitons. Here, we report electrically tunable spin singlet and triplet exciton emission from atomically aligned TMD heterostructures. We confirm the spin configurations of the light-emitting excitons employing magnetic fields to measure effective exciton g-factors. The interlayer tunneling current across the TMD vdW heterostructure enables the electrical generation of singlet and triplet exciton emission in this atomically thin PN junction. We demonstrate electrically tunability between the singlet and triplet excitons that are generated by charge injection. Atomically thin TMD heterostructure light emitting diodes thus enables a route for optoelectronic devices that can configure spin and valley quantum states independently by controlling the atomic stacking registry.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes\",\"authors\":\"Andrew Y. Joe, L. Jauregui, Kateryna Pistunova, Andrés M. Mier Valdivia, Zhengguang Lu, D. Wild, Giovanni Scuri, K. De Greve, Ryan J. Gelly, You Zhou, J. Sung, A. Sushko, T. Taniguchi, Kenji Watanabe, D. Smirnov, M. Lukin, Hongkun Park, P. Kim\",\"doi\":\"10.1103/PhysRevB.103.L161411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excitons are composite bosons that can feature spin singlet and triplet states. In usual semiconductors, without an additional spin-flip mechanism, triplet excitons are extremely inefficient optical emitters. Transition metal dichalcogenides (TMDs), with their large spin-orbit coupling, have been of special interest for valleytronic applications for their coupling of circularly polarized light to excitons with selective valley and spin$^{1-4}$. In atomically thin MoSe$_2$/WSe$_2$ TMD van der Waals (vdW) heterostructures, the unique atomic registry of vdW layers provides a quasi-angular momentum to interlayer excitons$^{5,6}$, enabling emission from otherwise dark spin triplet excitons. Here, we report electrically tunable spin singlet and triplet exciton emission from atomically aligned TMD heterostructures. We confirm the spin configurations of the light-emitting excitons employing magnetic fields to measure effective exciton g-factors. The interlayer tunneling current across the TMD vdW heterostructure enables the electrical generation of singlet and triplet exciton emission in this atomically thin PN junction. We demonstrate electrically tunability between the singlet and triplet excitons that are generated by charge injection. Atomically thin TMD heterostructure light emitting diodes thus enables a route for optoelectronic devices that can configure spin and valley quantum states independently by controlling the atomic stacking registry.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.L161411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L161411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
摘要
激子是复合玻色子,具有自旋单重态和三重态。在通常的半导体中,没有额外的自旋翻转机制,三重态激子是极低效的光发射器。过渡金属二硫族化合物(TMDs)具有较大的自旋-轨道耦合,可使圆偏振光与具有选择性谷和自旋$^{1-4}$的激子耦合,在谷电子应用中具有特殊的意义。在原子薄的MoSe$_2$/WSe$_2$ TMD van der Waals (vdW)异质结构中,vdW层独特的原子注册为层间激子$^{5,6}$提供了准角动量,从而使暗自旋三重态激子能够发射。在这里,我们报道了从原子排列的TMD异质结构中电可调谐的自旋单重态和三重态激子发射。我们利用磁场测量有效激子g因子,证实了发光激子的自旋构型。通过TMD vdW异质结构的层间隧道电流使得在这个原子薄的PN结中产生单线态和三重态激子发射。我们证明了由电荷注入产生的单重态和三重态激子之间的电可调性。因此,原子薄TMD异质结构发光二极管为光电子器件提供了一条途径,该器件可以通过控制原子堆叠注册来独立配置自旋和谷量子态。
Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes
Excitons are composite bosons that can feature spin singlet and triplet states. In usual semiconductors, without an additional spin-flip mechanism, triplet excitons are extremely inefficient optical emitters. Transition metal dichalcogenides (TMDs), with their large spin-orbit coupling, have been of special interest for valleytronic applications for their coupling of circularly polarized light to excitons with selective valley and spin$^{1-4}$. In atomically thin MoSe$_2$/WSe$_2$ TMD van der Waals (vdW) heterostructures, the unique atomic registry of vdW layers provides a quasi-angular momentum to interlayer excitons$^{5,6}$, enabling emission from otherwise dark spin triplet excitons. Here, we report electrically tunable spin singlet and triplet exciton emission from atomically aligned TMD heterostructures. We confirm the spin configurations of the light-emitting excitons employing magnetic fields to measure effective exciton g-factors. The interlayer tunneling current across the TMD vdW heterostructure enables the electrical generation of singlet and triplet exciton emission in this atomically thin PN junction. We demonstrate electrically tunability between the singlet and triplet excitons that are generated by charge injection. Atomically thin TMD heterostructure light emitting diodes thus enables a route for optoelectronic devices that can configure spin and valley quantum states independently by controlling the atomic stacking registry.