Pratibha Sharma, M. Wilkins, H. Schriemer, K. Hinzer
{"title":"用SPICE模拟四结太阳能电池的非均匀辐照度和色差效应","authors":"Pratibha Sharma, M. Wilkins, H. Schriemer, K. Hinzer","doi":"10.1109/PVSC.2014.6925639","DOIUrl":null,"url":null,"abstract":"A two-dimensional, distributed resistance model for a four junction solar cell is implemented in SPICE. Efficiency estimates for Gaussian irradiance profiles with different peak-to-average ratios (PAR) are determined via grid optimization at concentrations of 500, 1000 and 2000 suns. Optimizing finger spacing for a PAR of 6 improves cell efficiency by 1.8% (absolute) at 2000 suns compared to that observed from finger spacing optimized for a uniform illumination. To address the impact of chromatic aberration on cell efficiency, a CPV system is modeled in Zemax for a geometric concentration of 1250X. Using a finger spacing optimized for uniform irradiance at the average optical efficiency of 82%, the neglect of chromatic aberration was found to overstate system efficiency by 3% (absolute).","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"18 1","pages":"3293-3297"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modeling nonuniform irradiance and chromatic aberration effects in a four junction solar cell using SPICE\",\"authors\":\"Pratibha Sharma, M. Wilkins, H. Schriemer, K. Hinzer\",\"doi\":\"10.1109/PVSC.2014.6925639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-dimensional, distributed resistance model for a four junction solar cell is implemented in SPICE. Efficiency estimates for Gaussian irradiance profiles with different peak-to-average ratios (PAR) are determined via grid optimization at concentrations of 500, 1000 and 2000 suns. Optimizing finger spacing for a PAR of 6 improves cell efficiency by 1.8% (absolute) at 2000 suns compared to that observed from finger spacing optimized for a uniform illumination. To address the impact of chromatic aberration on cell efficiency, a CPV system is modeled in Zemax for a geometric concentration of 1250X. Using a finger spacing optimized for uniform irradiance at the average optical efficiency of 82%, the neglect of chromatic aberration was found to overstate system efficiency by 3% (absolute).\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"18 1\",\"pages\":\"3293-3297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling nonuniform irradiance and chromatic aberration effects in a four junction solar cell using SPICE
A two-dimensional, distributed resistance model for a four junction solar cell is implemented in SPICE. Efficiency estimates for Gaussian irradiance profiles with different peak-to-average ratios (PAR) are determined via grid optimization at concentrations of 500, 1000 and 2000 suns. Optimizing finger spacing for a PAR of 6 improves cell efficiency by 1.8% (absolute) at 2000 suns compared to that observed from finger spacing optimized for a uniform illumination. To address the impact of chromatic aberration on cell efficiency, a CPV system is modeled in Zemax for a geometric concentration of 1250X. Using a finger spacing optimized for uniform irradiance at the average optical efficiency of 82%, the neglect of chromatic aberration was found to overstate system efficiency by 3% (absolute).