基于多目标粒子群系统的认知网络资源优化

Hossam M. Alsaket, K. Mahmoud, H. Elattar, M. Aboul-Dahab
{"title":"基于多目标粒子群系统的认知网络资源优化","authors":"Hossam M. Alsaket, K. Mahmoud, H. Elattar, M. Aboul-Dahab","doi":"10.1109/WOCC.2017.7928994","DOIUrl":null,"url":null,"abstract":"Recently, Cognitive network has drawn the attention as a promising technology to enhance communication system performance by efficiently utilizing system resources. It provides prompt response to dynamic changes. In this paper, a modified multi-objective particle swarm optimization (M-MOPSO) is proposed in Cognitive IP Multimedia Subsystem (CogIMS) to improve the global network performance. The implementation and evaluation results of the system design using the algorithm is provided and compared with those obtained using Non-Dominated Sorting Genetic Algorithm (NSGA-II). Extensive simulations are carried out by using MATLAB software showed that M-MOPSO is comparable to NSGA-II in the network throughput. However, on average, M-MOPSO is faster than NSGA-II by 6.25 times considering the needed computation time for algorithm convergence.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource optimizer for Cognitive Network using multi-objective particle swarm system\",\"authors\":\"Hossam M. Alsaket, K. Mahmoud, H. Elattar, M. Aboul-Dahab\",\"doi\":\"10.1109/WOCC.2017.7928994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Cognitive network has drawn the attention as a promising technology to enhance communication system performance by efficiently utilizing system resources. It provides prompt response to dynamic changes. In this paper, a modified multi-objective particle swarm optimization (M-MOPSO) is proposed in Cognitive IP Multimedia Subsystem (CogIMS) to improve the global network performance. The implementation and evaluation results of the system design using the algorithm is provided and compared with those obtained using Non-Dominated Sorting Genetic Algorithm (NSGA-II). Extensive simulations are carried out by using MATLAB software showed that M-MOPSO is comparable to NSGA-II in the network throughput. However, on average, M-MOPSO is faster than NSGA-II by 6.25 times considering the needed computation time for algorithm convergence.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7928994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7928994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,认知网络作为一种有效利用通信系统资源来提高通信系统性能的技术受到了广泛的关注。它提供对动态变化的快速响应。本文在认知IP多媒体子系统(CogIMS)中提出了一种改进的多目标粒子群优化算法(M-MOPSO),以提高网络的全局性能。给出了采用该算法进行系统设计的实现和评价结果,并与采用非支配排序遗传算法(NSGA-II)的结果进行了比较。利用MATLAB软件进行了大量仿真,结果表明M-MOPSO在网络吞吐量方面与NSGA-II相当。但考虑到算法收敛所需的计算时间,M-MOPSO平均比NSGA-II快6.25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource optimizer for Cognitive Network using multi-objective particle swarm system
Recently, Cognitive network has drawn the attention as a promising technology to enhance communication system performance by efficiently utilizing system resources. It provides prompt response to dynamic changes. In this paper, a modified multi-objective particle swarm optimization (M-MOPSO) is proposed in Cognitive IP Multimedia Subsystem (CogIMS) to improve the global network performance. The implementation and evaluation results of the system design using the algorithm is provided and compared with those obtained using Non-Dominated Sorting Genetic Algorithm (NSGA-II). Extensive simulations are carried out by using MATLAB software showed that M-MOPSO is comparable to NSGA-II in the network throughput. However, on average, M-MOPSO is faster than NSGA-II by 6.25 times considering the needed computation time for algorithm convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Index Experimental investigation of DCO-OFDM adaptive loading using Si PN-based receiver Linearization of a Radio-over-Fiber mobile fronthaul with feedback loop Decision tree rule-based feature selection for large-scale imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1