反因果学习场景中的半监督插值

D. Janzing, B. Scholkopf
{"title":"反因果学习场景中的半监督插值","authors":"D. Janzing, B. Scholkopf","doi":"10.5555/2789272.2886811","DOIUrl":null,"url":null,"abstract":"According to a recently stated 'independence postulate', the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry, we study a deterministic causal relation Y = f(X) as recently assayed in Information-Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize the independence of PX and f as an orthogonality of vectors in appropriate inner product spaces. We prove that unlabelled data help for the problem of interpolating a monotonically increasing function if and only if the orthogonality conditions are violated - which we only expect for the anticausal direction. Here, performance of SSL and its supervised baseline analogue is measured in terms of two different loss functions: first, the mean squared error and second the surprise in a Bayesian prediction scenario.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"9 1","pages":"1923-1948"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Semi-supervised interpolation in an anticausal learning scenario\",\"authors\":\"D. Janzing, B. Scholkopf\",\"doi\":\"10.5555/2789272.2886811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to a recently stated 'independence postulate', the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry, we study a deterministic causal relation Y = f(X) as recently assayed in Information-Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize the independence of PX and f as an orthogonality of vectors in appropriate inner product spaces. We prove that unlabelled data help for the problem of interpolating a monotonically increasing function if and only if the orthogonality conditions are violated - which we only expect for the anticausal direction. Here, performance of SSL and its supervised baseline analogue is measured in terms of two different loss functions: first, the mean squared error and second the surprise in a Bayesian prediction scenario.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"9 1\",\"pages\":\"1923-1948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2789272.2886811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2886811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

根据最近提出的一个“独立性假设”,分布Pcause不包含有关条件条件peeffect |cause的信息,而peeffect可能包含有关Pcause|effect的信息。由于半监督学习(SSL)试图利用来自PX的信息来帮助预测来自X的Y,因此它应该只在反因果方向上工作,即当Y是原因而X是结果时。在因果方向上,当X是原因,Y是结果时,未标记的X值应该是无用的。为了阐明这种不对称性,我们研究了最近在信息几何因果推理(IGCI)中分析的确定性因果关系Y = f(X)。在这个模型中,我们讨论了将PX和f的独立性形式化为适当内积空间中向量的正交性的两种选择。我们证明,当且仅当正交性条件被违反时,未标记数据有助于插值单调递增函数的问题-我们只期望在反因果方向上。在这里,SSL及其监督基线模拟的性能是根据两个不同的损失函数来测量的:首先是均方误差,其次是贝叶斯预测场景中的惊讶度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-supervised interpolation in an anticausal learning scenario
According to a recently stated 'independence postulate', the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry, we study a deterministic causal relation Y = f(X) as recently assayed in Information-Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize the independence of PX and f as an orthogonality of vectors in appropriate inner product spaces. We prove that unlabelled data help for the problem of interpolating a monotonically increasing function if and only if the orthogonality conditions are violated - which we only expect for the anticausal direction. Here, performance of SSL and its supervised baseline analogue is measured in terms of two different loss functions: first, the mean squared error and second the surprise in a Bayesian prediction scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1