用于单目摄像机的半密集视觉里程计

Jakob J. Engel, Jürgen Sturm, D. Cremers
{"title":"用于单目摄像机的半密集视觉里程计","authors":"Jakob J. Engel, Jürgen Sturm, D. Cremers","doi":"10.1109/ICCV.2013.183","DOIUrl":null,"url":null,"abstract":"We propose a fundamentally novel approach to real-time visual odometry for a monocular camera. It allows to benefit from the simplicity and accuracy of dense tracking - which does not depend on visual features - while running in real-time on a CPU. The key idea is to continuously estimate a semi-dense inverse depth map for the current frame, which in turn is used to track the motion of the camera using dense image alignment. More specifically, we estimate the depth of all pixels which have a non-negligible image gradient. Each estimate is represented as a Gaussian probability distribution over the inverse depth. We propagate this information over time, and update it with new measurements as new images arrive. In terms of tracking accuracy and computational speed, the proposed method compares favorably to both state-of-the-art dense and feature-based visual odometry and SLAM algorithms. As our method runs in real-time on a CPU, it is of large practical value for robotics and augmented reality applications.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"19 1","pages":"1449-1456"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"558","resultStr":"{\"title\":\"Semi-dense Visual Odometry for a Monocular Camera\",\"authors\":\"Jakob J. Engel, Jürgen Sturm, D. Cremers\",\"doi\":\"10.1109/ICCV.2013.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fundamentally novel approach to real-time visual odometry for a monocular camera. It allows to benefit from the simplicity and accuracy of dense tracking - which does not depend on visual features - while running in real-time on a CPU. The key idea is to continuously estimate a semi-dense inverse depth map for the current frame, which in turn is used to track the motion of the camera using dense image alignment. More specifically, we estimate the depth of all pixels which have a non-negligible image gradient. Each estimate is represented as a Gaussian probability distribution over the inverse depth. We propagate this information over time, and update it with new measurements as new images arrive. In terms of tracking accuracy and computational speed, the proposed method compares favorably to both state-of-the-art dense and feature-based visual odometry and SLAM algorithms. As our method runs in real-time on a CPU, it is of large practical value for robotics and augmented reality applications.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"19 1\",\"pages\":\"1449-1456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"558\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 558

摘要

我们提出了一种全新的单目相机实时视觉里程计方法。它允许受益于密集跟踪的简单性和准确性-不依赖于视觉特征-同时在CPU上实时运行。关键思想是连续估计当前帧的半密集反深度图,该深度图反过来用于使用密集图像对齐来跟踪相机的运动。更具体地说,我们估计具有不可忽略的图像梯度的所有像素的深度。每个估计都表示为逆深度上的高斯概率分布。随着时间的推移,我们传播这些信息,并在新图像到达时用新的测量值更新它。在跟踪精度和计算速度方面,该方法优于最先进的密集和基于特征的视觉里程计和SLAM算法。由于我们的方法是在CPU上实时运行的,因此对于机器人和增强现实应用具有很大的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-dense Visual Odometry for a Monocular Camera
We propose a fundamentally novel approach to real-time visual odometry for a monocular camera. It allows to benefit from the simplicity and accuracy of dense tracking - which does not depend on visual features - while running in real-time on a CPU. The key idea is to continuously estimate a semi-dense inverse depth map for the current frame, which in turn is used to track the motion of the camera using dense image alignment. More specifically, we estimate the depth of all pixels which have a non-negligible image gradient. Each estimate is represented as a Gaussian probability distribution over the inverse depth. We propagate this information over time, and update it with new measurements as new images arrive. In terms of tracking accuracy and computational speed, the proposed method compares favorably to both state-of-the-art dense and feature-based visual odometry and SLAM algorithms. As our method runs in real-time on a CPU, it is of large practical value for robotics and augmented reality applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1