基于强化学习的大型物体运输多机器人系统自适应控制

S. Manko, S. Diane, Aleksey E. Krivoshatskiy, I. D. Margolin, Evgeniya A. Slepynina
{"title":"基于强化学习的大型物体运输多机器人系统自适应控制","authors":"S. Manko, S. Diane, Aleksey E. Krivoshatskiy, I. D. Margolin, Evgeniya A. Slepynina","doi":"10.1109/EICONRUS.2018.8317240","DOIUrl":null,"url":null,"abstract":"This paper describes models and algorithms for intelligent control of a group of autonomous mobile robots, which perform large-sized object transportation in a complex environment. The proposed models allow the multi-robot system to reach its target position while avoiding obstacles and maintaining object orientation with coordinated motion of several robots. We use neural based Q-learning to provide robots adaptability to unknown environments. The inputs of the learning subsystem are 2d-map data collected during system operation and target misalignments of multi-robot system. The primary output is a control decision with a maximum value of estimated efficiency. Experimental results presented in the paper fully confirm the reliability of the proposed approach.","PeriodicalId":6562,"journal":{"name":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"15 1","pages":"923-927"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive control of a multi-robot system for transportation of large-sized objects based on reinforcement learning\",\"authors\":\"S. Manko, S. Diane, Aleksey E. Krivoshatskiy, I. D. Margolin, Evgeniya A. Slepynina\",\"doi\":\"10.1109/EICONRUS.2018.8317240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes models and algorithms for intelligent control of a group of autonomous mobile robots, which perform large-sized object transportation in a complex environment. The proposed models allow the multi-robot system to reach its target position while avoiding obstacles and maintaining object orientation with coordinated motion of several robots. We use neural based Q-learning to provide robots adaptability to unknown environments. The inputs of the learning subsystem are 2d-map data collected during system operation and target misalignments of multi-robot system. The primary output is a control decision with a maximum value of estimated efficiency. Experimental results presented in the paper fully confirm the reliability of the proposed approach.\",\"PeriodicalId\":6562,\"journal\":{\"name\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"15 1\",\"pages\":\"923-927\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2018.8317240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2018.8317240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了一组在复杂环境下进行大型物体运输的自主移动机器人的智能控制模型和算法。所提出的模型允许多机器人系统在避开障碍物的同时到达目标位置,并通过多个机器人的协调运动保持物体的方向。我们使用基于神经的q学习来提供机器人对未知环境的适应性。学习子系统的输入是在系统运行过程中收集的二维地图数据和多机器人系统的目标错位。主要输出是一个具有最大估计效率值的控制决策。实验结果充分证明了该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive control of a multi-robot system for transportation of large-sized objects based on reinforcement learning
This paper describes models and algorithms for intelligent control of a group of autonomous mobile robots, which perform large-sized object transportation in a complex environment. The proposed models allow the multi-robot system to reach its target position while avoiding obstacles and maintaining object orientation with coordinated motion of several robots. We use neural based Q-learning to provide robots adaptability to unknown environments. The inputs of the learning subsystem are 2d-map data collected during system operation and target misalignments of multi-robot system. The primary output is a control decision with a maximum value of estimated efficiency. Experimental results presented in the paper fully confirm the reliability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The modeling of emergency oil spills in GIS Load balancing in cloud computing Practical characterisation of the piezo electric properties of a 3K T300 carbon fibre for impact sensoring Modelling of a photovoltaic array using Analog System Lab Kit Pro board Design of optimum configuration of a hybrid power system for Abertay University campus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1