用里特费尔德精馏法测定工业矿物中的无定形物质。

G. Christidis, Katerina Paipoutlidi, I. Marantos, Vasileios Perdikatsis
{"title":"用里特费尔德精馏法测定工业矿物中的无定形物质。","authors":"G. Christidis, Katerina Paipoutlidi, I. Marantos, Vasileios Perdikatsis","doi":"10.12681/BGSG.20940","DOIUrl":null,"url":null,"abstract":"A great variety of fine grained industrial rocks, which are valued by the industry contain variable amounts of amorphous or poorly crystalline matter, which is not easily detectable by the conventional mineralogical analysis methods based on X-ray diffraction (XRD). The quantification of amorphous matter in industrial rocks is a major task because it provides a thorough characterization of the raw materials and assists to interpret their reactivity. Among the most reliable methods used for quantification of amorphous matter, are those which are based on Rietveld refinement. In this study we prepared 1:1 mixtures of synthetic or natural calcite and quartz with 5-80% glass flour and added corundum ( α -Al 2 O 3 ) internal standard and applied the Autoquan 2.80 © software based on the BGMN computer code to quantify the amorphous matter content. The mixtures with synthetic minerals yielded results with minimum absolute error due to the similar particle size of the minerals, the internal standard and the glass. By contrast, the mixtures with natural minerals displayed greater relative error due to the particle size difference between the minerals on the one hand and the internal standard and the glass on the other, due to the microabsorption effect. Moreover, preferred orientation was important in the case of natural calcite, due to perfect  cleavage plane. Mixtures containing up to 25% amorphous matter did not display the characteristic hump at 20-30 °2 θ , suggesting that the lack of the hump is not a safe criterion for the recognition of amorphous matter.","PeriodicalId":9519,"journal":{"name":"Bulletin of the Geological Society of Greece","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of amorphous matter in industrial minerals with X-ray diffraction using Rietveld refinement.\",\"authors\":\"G. Christidis, Katerina Paipoutlidi, I. Marantos, Vasileios Perdikatsis\",\"doi\":\"10.12681/BGSG.20940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A great variety of fine grained industrial rocks, which are valued by the industry contain variable amounts of amorphous or poorly crystalline matter, which is not easily detectable by the conventional mineralogical analysis methods based on X-ray diffraction (XRD). The quantification of amorphous matter in industrial rocks is a major task because it provides a thorough characterization of the raw materials and assists to interpret their reactivity. Among the most reliable methods used for quantification of amorphous matter, are those which are based on Rietveld refinement. In this study we prepared 1:1 mixtures of synthetic or natural calcite and quartz with 5-80% glass flour and added corundum ( α -Al 2 O 3 ) internal standard and applied the Autoquan 2.80 © software based on the BGMN computer code to quantify the amorphous matter content. The mixtures with synthetic minerals yielded results with minimum absolute error due to the similar particle size of the minerals, the internal standard and the glass. By contrast, the mixtures with natural minerals displayed greater relative error due to the particle size difference between the minerals on the one hand and the internal standard and the glass on the other, due to the microabsorption effect. Moreover, preferred orientation was important in the case of natural calcite, due to perfect  cleavage plane. Mixtures containing up to 25% amorphous matter did not display the characteristic hump at 20-30 °2 θ , suggesting that the lack of the hump is not a safe criterion for the recognition of amorphous matter.\",\"PeriodicalId\":9519,\"journal\":{\"name\":\"Bulletin of the Geological Society of Greece\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Geological Society of Greece\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12681/BGSG.20940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Geological Society of Greece","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/BGSG.20940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多种细粒工业岩中含有不同数量的非晶态或低晶态物质,这些物质是传统的基于x射线衍射(XRD)的矿物学分析方法难以检测到的,是工业上很有价值的。工业岩石中无定形物质的定量是一项主要任务,因为它提供了原料的全面表征并有助于解释其反应性。其中最可靠的方法用于定量无定形物质,是那些基于里特费尔德细化。本研究将合成或天然方解石与石英以5-80%的玻璃粉配制成1:1的混合物,加入刚玉(α -Al 2o3)内标,采用基于BGMN计算机代码的Autoquan 2.80©软件对非晶态物质含量进行定量。由于矿物、内标和玻璃的粒度相似,合成矿物混合物产生的结果具有最小的绝对误差。相比之下,天然矿物混合物的相对误差较大,一方面是由于矿物与内标和玻璃之间的粒度差异,另一方面是由于微吸收效应。此外,由于天然方解石具有完美的解理面,因此优选取向很重要。非晶态物质含量高达25%的混合物在20-30°2 θ处没有显示出特征驼峰,这表明没有驼峰并不是识别非晶态物质的安全标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of amorphous matter in industrial minerals with X-ray diffraction using Rietveld refinement.
A great variety of fine grained industrial rocks, which are valued by the industry contain variable amounts of amorphous or poorly crystalline matter, which is not easily detectable by the conventional mineralogical analysis methods based on X-ray diffraction (XRD). The quantification of amorphous matter in industrial rocks is a major task because it provides a thorough characterization of the raw materials and assists to interpret their reactivity. Among the most reliable methods used for quantification of amorphous matter, are those which are based on Rietveld refinement. In this study we prepared 1:1 mixtures of synthetic or natural calcite and quartz with 5-80% glass flour and added corundum ( α -Al 2 O 3 ) internal standard and applied the Autoquan 2.80 © software based on the BGMN computer code to quantify the amorphous matter content. The mixtures with synthetic minerals yielded results with minimum absolute error due to the similar particle size of the minerals, the internal standard and the glass. By contrast, the mixtures with natural minerals displayed greater relative error due to the particle size difference between the minerals on the one hand and the internal standard and the glass on the other, due to the microabsorption effect. Moreover, preferred orientation was important in the case of natural calcite, due to perfect  cleavage plane. Mixtures containing up to 25% amorphous matter did not display the characteristic hump at 20-30 °2 θ , suggesting that the lack of the hump is not a safe criterion for the recognition of amorphous matter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical and Strategic Metal Resources of Greece Tsunamis versus extreme meteorological waves: Evidence from the 2004 Aegean Sea cyclone in Samos Island Morphometric Analyses of Greek Caves: How Morphology Predicts Cave Origin First occurrence of Pliorhinus cf. megarhinus (Perrissodactyla, Rhinocerotidae) in Greece Investigating the capability of Sentinel-2 and Worldview-3 VNIR satellite data to detect mineralized zones at an igneous intrusion in the Koutala islet (Lavreotiki, Greece) using laboratory mineralogical analysis, reflectance spectroscopy and spectral indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1