OneEE:一个快速重叠和嵌套事件提取的单阶段框架

H. Cao, Jingye Li, Fangfang Su, Fei Li, Hao Fei, Shengqiong Wu, Bobo Li, Liang Zhao, Donghong Ji
{"title":"OneEE:一个快速重叠和嵌套事件提取的单阶段框架","authors":"H. Cao, Jingye Li, Fangfang Su, Fei Li, Hao Fei, Shengqiong Wu, Bobo Li, Liang Zhao, Donghong Ji","doi":"10.48550/arXiv.2209.02693","DOIUrl":null,"url":null,"abstract":"Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and arguments,which suffer from error propagation. Therefore, we design a simple yet effective tagging scheme and model to formulate EE as word-word relation recognition, called OneEE. The relations between trigger or argument words are simultaneously recognized in one stage with parallel grid tagging, thus yielding a very fast event extraction speed. The model is equipped with an adaptive event fusion module to generate event-aware representations and a distance-aware predictor to integrate relative distance information for word-word relation recognition, which are empirically demonstrated to be effective mechanisms. Experiments on 3 overlapped and nested EE benchmarks, namely FewFC, Genia11, and Genia13, show that OneEE achieves the state-of-the-art (SOTA) results. Moreover, the inference speed of OneEE is faster than those of baselines in the same condition, and can be further substantially improved since it supports parallel inference.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"52 1","pages":"1953-1964"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"OneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction\",\"authors\":\"H. Cao, Jingye Li, Fangfang Su, Fei Li, Hao Fei, Shengqiong Wu, Bobo Li, Liang Zhao, Donghong Ji\",\"doi\":\"10.48550/arXiv.2209.02693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and arguments,which suffer from error propagation. Therefore, we design a simple yet effective tagging scheme and model to formulate EE as word-word relation recognition, called OneEE. The relations between trigger or argument words are simultaneously recognized in one stage with parallel grid tagging, thus yielding a very fast event extraction speed. The model is equipped with an adaptive event fusion module to generate event-aware representations and a distance-aware predictor to integrate relative distance information for word-word relation recognition, which are empirically demonstrated to be effective mechanisms. Experiments on 3 overlapped and nested EE benchmarks, namely FewFC, Genia11, and Genia13, show that OneEE achieves the state-of-the-art (SOTA) results. Moreover, the inference speed of OneEE is faster than those of baselines in the same condition, and can be further substantially improved since it supports parallel inference.\",\"PeriodicalId\":91381,\"journal\":{\"name\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"volume\":\"52 1\",\"pages\":\"1953-1964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.02693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

事件抽取(Event extraction, EE)是信息抽取的一项重要任务,其目的是从非结构化文本中抽取结构化事件信息。大多数先前的工作侧重于提取平坦事件,而忽略了重叠或嵌套的事件。一些用于重叠和嵌套EE的模型包括几个连续的阶段来提取事件触发器和参数,这些阶段会受到错误传播的影响。因此,我们设计了一个简单而有效的标记方案和模型,将EE表述为词-词关系识别,称为OneEE。通过并行网格标注,在一个阶段内同时识别触发词和参数词之间的关系,从而获得非常快的事件提取速度。该模型采用自适应事件融合模块生成事件感知表示,采用距离感知预测器整合相对距离信息进行词词关系识别,是一种有效的机制。在3个重叠嵌套的EE基准测试(即FewFC、Genia11和Genia13)上的实验表明,OneEE达到了最先进(SOTA)的结果。此外,在相同条件下,OneEE的推理速度比基线快,并且由于它支持并行推理,可以进一步大幅度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction
Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and arguments,which suffer from error propagation. Therefore, we design a simple yet effective tagging scheme and model to formulate EE as word-word relation recognition, called OneEE. The relations between trigger or argument words are simultaneously recognized in one stage with parallel grid tagging, thus yielding a very fast event extraction speed. The model is equipped with an adaptive event fusion module to generate event-aware representations and a distance-aware predictor to integrate relative distance information for word-word relation recognition, which are empirically demonstrated to be effective mechanisms. Experiments on 3 overlapped and nested EE benchmarks, namely FewFC, Genia11, and Genia13, show that OneEE achieves the state-of-the-art (SOTA) results. Moreover, the inference speed of OneEE is faster than those of baselines in the same condition, and can be further substantially improved since it supports parallel inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1