氢溢出效应。一个误解的故事

M. Bettahar
{"title":"氢溢出效应。一个误解的故事","authors":"M. Bettahar","doi":"10.1080/01614940.2020.1787771","DOIUrl":null,"url":null,"abstract":"ABSTRACT The hydrogen spillover effect (HSPE) on metal catalysts supported on non-reducible oxides is still controversial. Our investigation shows that the controversy comes from a misunderstanding about statements of pioneer works. Papers accepting or rejecting the HSPE and based on these statements were found both not pertinent. Factually, the oxide surface OH groups play an important role in the formation, extent, and reactivity of hydrogen spillover. We propose that hydrogen spillover would consist in H/OH pairs, produced by an interfacial dehydroxylation then diffusing over the support by a thermodynamically neutral H/OH exchange mechanism and not by an H atom hopping process, as generally believed. The hydrogen atoms of the H/OH pairs may be consumed chemically or desorb as H2, giving rise to □/O2- pairs (where □ denotes an oxygen vacancy) which, in turn, may further dissociate H2, renewing the H/OH active sites. H/OH and □/O2 constitute conjugated pairs in the hydrogen spillover effect.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"16 1","pages":"87 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The hydrogen spillover effect. A misunderstanding story\",\"authors\":\"M. Bettahar\",\"doi\":\"10.1080/01614940.2020.1787771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The hydrogen spillover effect (HSPE) on metal catalysts supported on non-reducible oxides is still controversial. Our investigation shows that the controversy comes from a misunderstanding about statements of pioneer works. Papers accepting or rejecting the HSPE and based on these statements were found both not pertinent. Factually, the oxide surface OH groups play an important role in the formation, extent, and reactivity of hydrogen spillover. We propose that hydrogen spillover would consist in H/OH pairs, produced by an interfacial dehydroxylation then diffusing over the support by a thermodynamically neutral H/OH exchange mechanism and not by an H atom hopping process, as generally believed. The hydrogen atoms of the H/OH pairs may be consumed chemically or desorb as H2, giving rise to □/O2- pairs (where □ denotes an oxygen vacancy) which, in turn, may further dissociate H2, renewing the H/OH active sites. H/OH and □/O2 constitute conjugated pairs in the hydrogen spillover effect.\",\"PeriodicalId\":9647,\"journal\":{\"name\":\"Catalysis Reviews\",\"volume\":\"16 1\",\"pages\":\"87 - 125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01614940.2020.1787771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2020.1787771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

不可还原氧化物负载金属催化剂的氢溢出效应(HSPE)仍存在争议。我们的调查表明,争议源于对先锋作品陈述的误解。接受或拒绝HSPE和基于这些声明的论文都被认为是不相关的。事实上,氧化物表面的OH基团对氢溢出的形成、程度和反应性起着重要的作用。我们提出,氢溢出可能存在于H/OH对中,由界面去羟基化产生,然后通过热力学中性H/OH交换机制扩散到载体上,而不是像通常认为的那样通过H原子跳变过程。H/OH对中的氢原子可能被化学消耗或解吸为H2,产生□/O2-对(□表示氧空位),而□/O2-对又可能进一步解离H2,更新H/OH活性位点。H/OH和□/O2在氢溢出效应中构成共轭对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The hydrogen spillover effect. A misunderstanding story
ABSTRACT The hydrogen spillover effect (HSPE) on metal catalysts supported on non-reducible oxides is still controversial. Our investigation shows that the controversy comes from a misunderstanding about statements of pioneer works. Papers accepting or rejecting the HSPE and based on these statements were found both not pertinent. Factually, the oxide surface OH groups play an important role in the formation, extent, and reactivity of hydrogen spillover. We propose that hydrogen spillover would consist in H/OH pairs, produced by an interfacial dehydroxylation then diffusing over the support by a thermodynamically neutral H/OH exchange mechanism and not by an H atom hopping process, as generally believed. The hydrogen atoms of the H/OH pairs may be consumed chemically or desorb as H2, giving rise to □/O2- pairs (where □ denotes an oxygen vacancy) which, in turn, may further dissociate H2, renewing the H/OH active sites. H/OH and □/O2 constitute conjugated pairs in the hydrogen spillover effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unimolecular and bimolecular reactions of organic intermediates on metal oxide catalysts: an update Advancements and Perspective of Environmentally Sustainable Technologies for Electrochemical Selective Conversion of CO 2 to Methanol Michael reaction in organocascade catalysis: A powerful tool for creating architectural complexity in the construction of medicinally privileged heterocyclic scaffolds State-of-the-art for the development of Cu-based heterogeneous catalysts for efficient utilization of furfural to value chemicals via liquid-phase and gas-phase reactions Recent advancements in synthesis and multi-functional catalytic applications of graphitic carbon nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1