基于预训练的越南语选区分析实证研究

Tuan-Vi Tran, Xuan-Thien Pham, Duc-Vu Nguyen, Kiet Van Nguyen, N. Nguyen
{"title":"基于预训练的越南语选区分析实证研究","authors":"Tuan-Vi Tran, Xuan-Thien Pham, Duc-Vu Nguyen, Kiet Van Nguyen, N. Nguyen","doi":"10.1109/RIVF51545.2021.9642143","DOIUrl":null,"url":null,"abstract":"Constituency parsing is an important task that gets more attention in natural language processing. In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-R and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-R archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"52 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Empirical Study for Vietnamese Constituency Parsing with Pre-training\",\"authors\":\"Tuan-Vi Tran, Xuan-Thien Pham, Duc-Vu Nguyen, Kiet Van Nguyen, N. Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constituency parsing is an important task that gets more attention in natural language processing. In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-R and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-R archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"52 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

成分分析是自然语言处理中备受关注的一项重要任务。在这项工作中,我们使用基于跨度的方法进行越南语选区解析。我们的方法遵循自关注编码器架构和使用cky风格推理算法的图表解码器。我们在越南数据集VietTreebank和NIIVTB1上使用预训练模型XLM-R和PhoBERT对我们的经验方法的实验结果进行了比较分析。结果表明,我们的XLM-R模型的f1得分明显优于其他预训练模型,VietTreebank为81.19%,NIIVTB1为85.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study for Vietnamese Constituency Parsing with Pre-training
Constituency parsing is an important task that gets more attention in natural language processing. In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-R and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-R archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1