RVP-FLMS:一种鲁棒变幂分数阶LMS算法

Jawwad Ahmad, Muhammad Usman, Shujaat Khan, I. Naseem, Hassan Jamil Syed
{"title":"RVP-FLMS:一种鲁棒变幂分数阶LMS算法","authors":"Jawwad Ahmad, Muhammad Usman, Shujaat Khan, I. Naseem, Hassan Jamil Syed","doi":"10.1109/ICCSCE.2016.7893626","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive framework for the variable power of the fractional least mean square (FLMS) algorithm. The proposed algorithm named as robust variable power FLMS (RVP-FLMS) dynamically adapts the fractional power of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problems of system identification and channel equalization are considered. The experiments clearly show that the proposed approach achieves better convergence rate and lower steady-state error compared to the FLMS. The MATLAB code for the related simulation is available online at https://goo.gl/dGTGmP.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"73 1","pages":"494-497"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"RVP-FLMS: A robust variable power fractional LMS algorithm\",\"authors\":\"Jawwad Ahmad, Muhammad Usman, Shujaat Khan, I. Naseem, Hassan Jamil Syed\",\"doi\":\"10.1109/ICCSCE.2016.7893626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an adaptive framework for the variable power of the fractional least mean square (FLMS) algorithm. The proposed algorithm named as robust variable power FLMS (RVP-FLMS) dynamically adapts the fractional power of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problems of system identification and channel equalization are considered. The experiments clearly show that the proposed approach achieves better convergence rate and lower steady-state error compared to the FLMS. The MATLAB code for the related simulation is available online at https://goo.gl/dGTGmP.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"73 1\",\"pages\":\"494-497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了分数阶最小均方(FLMS)算法变幂的自适应框架。提出的鲁棒变功率FLMS (RVP-FLMS)算法通过动态调整FLMS的分数阶功率实现高收敛速度和低稳态误差。为了评估目的,考虑了系统识别和信道均衡问题。实验结果表明,该方法具有较好的收敛速度和较低的稳态误差。相关仿真的MATLAB代码可在https://goo.gl/dGTGmP上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RVP-FLMS: A robust variable power fractional LMS algorithm
In this paper, we propose an adaptive framework for the variable power of the fractional least mean square (FLMS) algorithm. The proposed algorithm named as robust variable power FLMS (RVP-FLMS) dynamically adapts the fractional power of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problems of system identification and channel equalization are considered. The experiments clearly show that the proposed approach achieves better convergence rate and lower steady-state error compared to the FLMS. The MATLAB code for the related simulation is available online at https://goo.gl/dGTGmP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1