基于规则的脏数据分类法。

Lin Li, Taoxin Peng, J. Kennedy
{"title":"基于规则的脏数据分类法。","authors":"Lin Li, Taoxin Peng, J. Kennedy","doi":"10.5176/978-981-08-6308-1_D-035","DOIUrl":null,"url":null,"abstract":"There is a growing awareness that high quality of data is a key to today’s business success and that dirty data existing within data sources is one of the causes of poor data quality. To ensure high quality data, enterprises need to have a process, methodologies and resources to monitor, analyze and maintain the quality of data. Nevertheless, research shows that many enterprises do not pay adequate attention to the existence of dirty data and have not applied useful methodologies to ensure high quality data for their applications. One of the reasons is a lack of appreciation of the types and extent of dirty data. In practice, detecting and cleaning all the dirty data that exists in all data sources is quite expensive and unrealistic. The cost of cleaning dirty data needs to be considered for most of enterprises. This problem has not attracted enough attention from researchers. In this paper, a rule-based taxonomy of dirty data is developed. The proposed taxonomy not only provides a mechanism to deal with this problem but also includes more dirty data types than any of existing such taxonomies.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A rule based taxonomy of dirty data.\",\"authors\":\"Lin Li, Taoxin Peng, J. Kennedy\",\"doi\":\"10.5176/978-981-08-6308-1_D-035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing awareness that high quality of data is a key to today’s business success and that dirty data existing within data sources is one of the causes of poor data quality. To ensure high quality data, enterprises need to have a process, methodologies and resources to monitor, analyze and maintain the quality of data. Nevertheless, research shows that many enterprises do not pay adequate attention to the existence of dirty data and have not applied useful methodologies to ensure high quality data for their applications. One of the reasons is a lack of appreciation of the types and extent of dirty data. In practice, detecting and cleaning all the dirty data that exists in all data sources is quite expensive and unrealistic. The cost of cleaning dirty data needs to be considered for most of enterprises. This problem has not attracted enough attention from researchers. In this paper, a rule-based taxonomy of dirty data is developed. The proposed taxonomy not only provides a mechanism to deal with this problem but also includes more dirty data types than any of existing such taxonomies.\",\"PeriodicalId\":91079,\"journal\":{\"name\":\"GSTF international journal on computing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSTF international journal on computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5176/978-981-08-6308-1_D-035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5176/978-981-08-6308-1_D-035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

越来越多的人意识到,高质量的数据是当今业务成功的关键,而数据源中存在的脏数据是导致数据质量差的原因之一。为了确保高质量的数据,企业需要有一个过程、方法和资源来监控、分析和维护数据的质量。然而,研究表明,许多企业没有对脏数据的存在给予足够的重视,也没有采用有用的方法来确保其应用程序的高质量数据。原因之一是缺乏对脏数据的类型和范围的认识。在实践中,检测和清除存在于所有数据源中的所有脏数据是非常昂贵和不现实的。大多数企业都需要考虑清理脏数据的成本。这个问题还没有引起研究者的足够重视。本文提出了一种基于规则的脏数据分类方法。所建议的分类法不仅提供了处理这个问题的机制,而且比任何现有的此类分类法包含更多的脏数据类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A rule based taxonomy of dirty data.
There is a growing awareness that high quality of data is a key to today’s business success and that dirty data existing within data sources is one of the causes of poor data quality. To ensure high quality data, enterprises need to have a process, methodologies and resources to monitor, analyze and maintain the quality of data. Nevertheless, research shows that many enterprises do not pay adequate attention to the existence of dirty data and have not applied useful methodologies to ensure high quality data for their applications. One of the reasons is a lack of appreciation of the types and extent of dirty data. In practice, detecting and cleaning all the dirty data that exists in all data sources is quite expensive and unrealistic. The cost of cleaning dirty data needs to be considered for most of enterprises. This problem has not attracted enough attention from researchers. In this paper, a rule-based taxonomy of dirty data is developed. The proposed taxonomy not only provides a mechanism to deal with this problem but also includes more dirty data types than any of existing such taxonomies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive Computing supported Medical Decision Support System for Patient’s Driving Assessment Propaganda Barometer : A Supportive Tool to Improve Media Literacy Towards Building a Critically Thinking Society A framework for the adoption of bring your own device (BYOD) in the hospital environment On developing adaptive vocabulary learning game for children with an early language delay Stroke Cognitive Medical Assistant (StrokeCMA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1