{"title":"专家系统知识库中不确定性建模的新方法","authors":"A. Niederlinski","doi":"10.24425/119075","DOIUrl":null,"url":null,"abstract":"The current paradigm of modelling uncertainty in expert systems knowledge bases using Certainty Factors (CF) has been critically evaluated. A way to circumvent the awkwardness, non-intuitiveness and constraints encountered while using CF has been proposed. It is based on introducing Data Marks for askable conditions and Data Marks for conclusions of relational models, followed by choosing the best suited way to propagate those Data Marks into Data Marks of rule conclusions. This is done in a way orthogonal to the inference using Aristotelian Logic. Using Data Marks instead of Certainty Factors removes thus the intellectual discomfort caused by rejecting the notion of truth, falsehood and the Aristotelian law of excluded middle, as is done when using the CF methodology. There is also no need for changing the inference system software (expert system shell): the Data Marks approach can be implemented by simply modifying the knowledge base that should accommodate them. The methodology of using Data Marks to model uncertainty in knowledge bases has been illustrated by an example of SWOT analysis of a small electronic company. A short summary of SWOT analysis has been presented. The basic data used for SWOT analysis of the company are discussed. The rmes_EE SWOT knowledge base consisting of a rule base and model base have been presented and explained. The results of forward chaining for this knowledge base have been presented and critically evaluated.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"39 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach for modelling uncertainty in expert systems knowledge bases\",\"authors\":\"A. Niederlinski\",\"doi\":\"10.24425/119075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paradigm of modelling uncertainty in expert systems knowledge bases using Certainty Factors (CF) has been critically evaluated. A way to circumvent the awkwardness, non-intuitiveness and constraints encountered while using CF has been proposed. It is based on introducing Data Marks for askable conditions and Data Marks for conclusions of relational models, followed by choosing the best suited way to propagate those Data Marks into Data Marks of rule conclusions. This is done in a way orthogonal to the inference using Aristotelian Logic. Using Data Marks instead of Certainty Factors removes thus the intellectual discomfort caused by rejecting the notion of truth, falsehood and the Aristotelian law of excluded middle, as is done when using the CF methodology. There is also no need for changing the inference system software (expert system shell): the Data Marks approach can be implemented by simply modifying the knowledge base that should accommodate them. The methodology of using Data Marks to model uncertainty in knowledge bases has been illustrated by an example of SWOT analysis of a small electronic company. A short summary of SWOT analysis has been presented. The basic data used for SWOT analysis of the company are discussed. The rmes_EE SWOT knowledge base consisting of a rule base and model base have been presented and explained. The results of forward chaining for this knowledge base have been presented and critically evaluated.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/119075\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/119075","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A new approach for modelling uncertainty in expert systems knowledge bases
The current paradigm of modelling uncertainty in expert systems knowledge bases using Certainty Factors (CF) has been critically evaluated. A way to circumvent the awkwardness, non-intuitiveness and constraints encountered while using CF has been proposed. It is based on introducing Data Marks for askable conditions and Data Marks for conclusions of relational models, followed by choosing the best suited way to propagate those Data Marks into Data Marks of rule conclusions. This is done in a way orthogonal to the inference using Aristotelian Logic. Using Data Marks instead of Certainty Factors removes thus the intellectual discomfort caused by rejecting the notion of truth, falsehood and the Aristotelian law of excluded middle, as is done when using the CF methodology. There is also no need for changing the inference system software (expert system shell): the Data Marks approach can be implemented by simply modifying the knowledge base that should accommodate them. The methodology of using Data Marks to model uncertainty in knowledge bases has been illustrated by an example of SWOT analysis of a small electronic company. A short summary of SWOT analysis has been presented. The basic data used for SWOT analysis of the company are discussed. The rmes_EE SWOT knowledge base consisting of a rule base and model base have been presented and explained. The results of forward chaining for this knowledge base have been presented and critically evaluated.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.