Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese
{"title":"延迟:混沌室内场景的鲁棒空间布局估计","authors":"Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese","doi":"10.1109/CVPR.2016.73","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"6 1","pages":"616-624"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes\",\"authors\":\"Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese\",\"doi\":\"10.1109/CVPR.2016.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"6 1\",\"pages\":\"616-624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes
We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.