{"title":"耐热涂料及其在延长电力设备资源中的应用前景(综述)。","authors":"S. Kharchenko, S. Kovtun","doi":"10.31472/ttpe.3.2021.10","DOIUrl":null,"url":null,"abstract":"An analysis of modern heat-resistant materials has been carried out, which contain refractory compounds of borides, nitrides, carbides with a limiting melting point of about 2000 °C. New approaches to obtaining heat-resistant materials and the results of studying their structure, phase composition, physical and mechanical properties are shown. For elements of power equipment, an effective and economically sound approach that has a significant effect is the use of heat-resistant coatings. Each heat-resistant covering and technology of its drawing is developed depending on conditions of its use, temperature modes of operation, ergonomic efficiency. The main method of increasing the operating temperature of the ceramic coating layer is to change the chemical composition of the ceramic by introducing an additional number of alloying rare earth elements. An important method of improving the quality of heat-resistant coatings is to optimize the thickness of the ceramic layer and the formation of a barrier microlayer at the interface.","PeriodicalId":23079,"journal":{"name":"Thermophysics and Thermal Power Engineering","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HEAT-RESISTANT COATINGS AND PROSPECTS OF THEIR USE FOR PROLONGATION OF THE RESOURCE OF POWER EQUIPMENT (Review).\",\"authors\":\"S. Kharchenko, S. Kovtun\",\"doi\":\"10.31472/ttpe.3.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis of modern heat-resistant materials has been carried out, which contain refractory compounds of borides, nitrides, carbides with a limiting melting point of about 2000 °C. New approaches to obtaining heat-resistant materials and the results of studying their structure, phase composition, physical and mechanical properties are shown. For elements of power equipment, an effective and economically sound approach that has a significant effect is the use of heat-resistant coatings. Each heat-resistant covering and technology of its drawing is developed depending on conditions of its use, temperature modes of operation, ergonomic efficiency. The main method of increasing the operating temperature of the ceramic coating layer is to change the chemical composition of the ceramic by introducing an additional number of alloying rare earth elements. An important method of improving the quality of heat-resistant coatings is to optimize the thickness of the ceramic layer and the formation of a barrier microlayer at the interface.\",\"PeriodicalId\":23079,\"journal\":{\"name\":\"Thermophysics and Thermal Power Engineering\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Thermal Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31472/ttpe.3.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Thermal Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31472/ttpe.3.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HEAT-RESISTANT COATINGS AND PROSPECTS OF THEIR USE FOR PROLONGATION OF THE RESOURCE OF POWER EQUIPMENT (Review).
An analysis of modern heat-resistant materials has been carried out, which contain refractory compounds of borides, nitrides, carbides with a limiting melting point of about 2000 °C. New approaches to obtaining heat-resistant materials and the results of studying their structure, phase composition, physical and mechanical properties are shown. For elements of power equipment, an effective and economically sound approach that has a significant effect is the use of heat-resistant coatings. Each heat-resistant covering and technology of its drawing is developed depending on conditions of its use, temperature modes of operation, ergonomic efficiency. The main method of increasing the operating temperature of the ceramic coating layer is to change the chemical composition of the ceramic by introducing an additional number of alloying rare earth elements. An important method of improving the quality of heat-resistant coatings is to optimize the thickness of the ceramic layer and the formation of a barrier microlayer at the interface.