商用电子鼻对蜜蜂嗅觉特征的验证

A. Correa, M. Cuenca, C. Zuluaga, M. Scampicchio, M. Quicazán
{"title":"商用电子鼻对蜜蜂嗅觉特征的验证","authors":"A. Correa, M. Cuenca, C. Zuluaga, M. Scampicchio, M. Quicazán","doi":"10.15446/ING.INVESTIG.V37N3.59656","DOIUrl":null,"url":null,"abstract":"Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g), incubation temperature (30, 40 and 50 °C), incubation time 30 min), gas flow (50, 150 and 250 mL/min) and injection time (100, 200 and 300 s). The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.","PeriodicalId":21285,"journal":{"name":"Revista Ingenieria E Investigacion","volume":"13 1","pages":"45-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Validation of honey-bee smelling profile by using a commercial electronic nose\",\"authors\":\"A. Correa, M. Cuenca, C. Zuluaga, M. Scampicchio, M. Quicazán\",\"doi\":\"10.15446/ING.INVESTIG.V37N3.59656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g), incubation temperature (30, 40 and 50 °C), incubation time 30 min), gas flow (50, 150 and 250 mL/min) and injection time (100, 200 and 300 s). The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.\",\"PeriodicalId\":21285,\"journal\":{\"name\":\"Revista Ingenieria E Investigacion\",\"volume\":\"13 1\",\"pages\":\"45-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenieria E Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/ING.INVESTIG.V37N3.59656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenieria E Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/ING.INVESTIG.V37N3.59656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

蜂蜜是一种天然甜味剂,其质量标签与植物或地理来源有关,这是通过孢粉学和感官分析确定的。使用快速和非侵入性技术,如电子鼻,可以成为蜂蜜分类的另一种选择。在本研究中,验证了商用电子鼻的操作参数,以确定蜂蜜气味特征。采用五因素、三水平、28项检测的中心复合设计,包括不同的进样量(1、2和3 g)、孵育温度(30、40和50℃)、孵育时间(30 min)、气体流量(50、150和250 mL/min)和注射时间(100、200和300 s)。以10%的变异系数评价重复性。采用响应面法,最佳操作条件为:样品3 g, 50℃孵育17 min,气流量100 mL/min,取样时间150 s。最后,利用这些参数对19个蜂蜜样品进行了分析,并根据它们的气味特征进行了分类,表明它是一个有用的蜂蜜分类工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of honey-bee smelling profile by using a commercial electronic nose
Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g), incubation temperature (30, 40 and 50 °C), incubation time 30 min), gas flow (50, 150 and 250 mL/min) and injection time (100, 200 and 300 s). The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Performance and Emission Characteristics of a Diesel Engine Operated with Ternary Higher Alcohol Biofuel Blends A Gender Gap Analysis on Academic Performance in Engineering Students on Admission and Exit Standardized Tests Identification of Eroded and Erosion Risk Areas Using Remote Sensing and GIS in the Quebrada Seca watershed A Hybrid-Flipped Classroom Approach: Students’ Perception and Performance Assessment Towards a Theory of Interoperability of Software Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1