在多云服务器中发现web数据提取和数据挖掘的增强技术

Dadi Madhu SivaRama Krishna, S.Suryanarayana Raju and Ajay Dilip Kumar Marapatl
{"title":"在多云服务器中发现web数据提取和数据挖掘的增强技术","authors":"Dadi Madhu SivaRama Krishna, S.Suryanarayana Raju and Ajay Dilip Kumar Marapatl","doi":"10.46501/ijmtst0710006","DOIUrl":null,"url":null,"abstract":"Data mining is a critical stage in the Knowledge Discovery process acquire from databases (KDD), thus a new approach that’s can\njoint with online data process of extraction, which serves as data gathering from the global network ( web), and data mining\ntechniques is required.The primary contribution of this study is the proposal of a system for collecting categorical online data on\nseveral cloud servers while ensuring data security and integrity for consumers. The algorithms' effectiveness employed inside our\ntechnique is illustrated using clustered sections of the data that should be encrypted inside the cloud server combining the three\nclustering measurements precision, recall, and accuracy. We proposed KeyGen algorithm to maintain data security by using\ncryptographic concepts with respective ABE (attribute-based encryption) and cypher text policy (cypher text policy) are two types\nof attribute-based encryption (CP-ABE).","PeriodicalId":13741,"journal":{"name":"International Journal for Modern Trends in Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Technique to discover web data extraction and Data mining in Multi Cloud Server\",\"authors\":\"Dadi Madhu SivaRama Krishna, S.Suryanarayana Raju and Ajay Dilip Kumar Marapatl\",\"doi\":\"10.46501/ijmtst0710006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is a critical stage in the Knowledge Discovery process acquire from databases (KDD), thus a new approach that’s can\\njoint with online data process of extraction, which serves as data gathering from the global network ( web), and data mining\\ntechniques is required.The primary contribution of this study is the proposal of a system for collecting categorical online data on\\nseveral cloud servers while ensuring data security and integrity for consumers. The algorithms' effectiveness employed inside our\\ntechnique is illustrated using clustered sections of the data that should be encrypted inside the cloud server combining the three\\nclustering measurements precision, recall, and accuracy. We proposed KeyGen algorithm to maintain data security by using\\ncryptographic concepts with respective ABE (attribute-based encryption) and cypher text policy (cypher text policy) are two types\\nof attribute-based encryption (CP-ABE).\",\"PeriodicalId\":13741,\"journal\":{\"name\":\"International Journal for Modern Trends in Science and Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Modern Trends in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46501/ijmtst0710006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Modern Trends in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46501/ijmtst0710006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘是从数据库中获取知识发现过程的关键阶段,因此需要一种与在线数据提取过程相结合的新方法,作为从全局网络中收集数据的方法,需要数据挖掘技术。本研究的主要贡献是提出了一个系统,用于在几个云服务器上收集分类在线数据,同时确保消费者的数据安全和完整性。在我们的技术中使用的算法的有效性是通过使用应该在云服务器中加密的数据的聚类部分来说明的,这些数据结合了三个聚类测量精度、召回率和准确性。我们提出了KeyGen算法,通过使用各自的ABE(基于属性的加密)和密码文本策略(密码文本策略)的密码概念来维护数据安全,这是两种类型的基于属性的加密(CP-ABE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced Technique to discover web data extraction and Data mining in Multi Cloud Server
Data mining is a critical stage in the Knowledge Discovery process acquire from databases (KDD), thus a new approach that’s can joint with online data process of extraction, which serves as data gathering from the global network ( web), and data mining techniques is required.The primary contribution of this study is the proposal of a system for collecting categorical online data on several cloud servers while ensuring data security and integrity for consumers. The algorithms' effectiveness employed inside our technique is illustrated using clustered sections of the data that should be encrypted inside the cloud server combining the three clustering measurements precision, recall, and accuracy. We proposed KeyGen algorithm to maintain data security by using cryptographic concepts with respective ABE (attribute-based encryption) and cypher text policy (cypher text policy) are two types of attribute-based encryption (CP-ABE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Research Article on Sustainable Construction Material Oil Spill: Their Impact, Recovery and future prevention Analysis and Design of Water Distribution Network for Jabalpur Cantonment Board Area Efficiency and Elegance: Exploring Automated Solutions for Public Lighting A Study on Operational Efficiency of Cold Supply Chain Service Providers with Special Reference to Selected Container Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1