化学成分对Bi-Ge-In合金显微组织、硬度和电导率的影响

A. Djordjevic, M. Premović, D. Minić, M. Kolarević, M. Tomović
{"title":"化学成分对Bi-Ge-In合金显微组织、硬度和电导率的影响","authors":"A. Djordjevic, M. Premović, D. Minić, M. Kolarević, M. Tomović","doi":"10.30544/561","DOIUrl":null,"url":null,"abstract":"In this study, the microstructure, hardness, and electrical properties of selected ternary Bi-Ge-In alloys were investigated. Isothermal sections of the Bi-Ge-In system at 25, 200, and 300 ° C were extrapolated using optimized thermodynamic parameters from the literature. The used experimental techniques include optical microscopy, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS), Brinell hardness, and electrical conductivity measurements. The results of EDS phase composition analysis were compared with the calculated isothermal sections and a good overall agreement was reached. The results of the XRD were also in line with the predicted phase balance. By using ANOVA analysis and experimental results of Brinell hardness and electrical conductivity, a mathematical model was suggested for the calculation of these properties along with all composition ranges. The appropriated mathematical model was subsequently used for the prediction of hardness and electrical conductivity throughout the whole composition range.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of chemical composition on the microstructure, hardness and electrical conductivity profiles of the Bi-Ge-In alloys\",\"authors\":\"A. Djordjevic, M. Premović, D. Minić, M. Kolarević, M. Tomović\",\"doi\":\"10.30544/561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the microstructure, hardness, and electrical properties of selected ternary Bi-Ge-In alloys were investigated. Isothermal sections of the Bi-Ge-In system at 25, 200, and 300 ° C were extrapolated using optimized thermodynamic parameters from the literature. The used experimental techniques include optical microscopy, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS), Brinell hardness, and electrical conductivity measurements. The results of EDS phase composition analysis were compared with the calculated isothermal sections and a good overall agreement was reached. The results of the XRD were also in line with the predicted phase balance. By using ANOVA analysis and experimental results of Brinell hardness and electrical conductivity, a mathematical model was suggested for the calculation of these properties along with all composition ranges. The appropriated mathematical model was subsequently used for the prediction of hardness and electrical conductivity throughout the whole composition range.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30544/561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了选定的三元Bi-Ge-In合金的显微组织、硬度和电性能。利用文献中优化的热力学参数外推了Bi-Ge-In系统在25、200和300°C时的等温截面。使用的实验技术包括光学显微镜,x射线粉末衍射(XRD),扫描电子显微镜(SEM)和能量色散光谱(EDS),布氏硬度和电导率测量。将EDS相组成分析结果与等温截面计算结果进行了比较,得到了较好的一致性。XRD结果也与预测相平衡一致。通过方差分析和布氏硬度和电导率的实验结果,提出了一个计算布氏硬度和电导率的数学模型。适当的数学模型随后用于预测整个成分范围内的硬度和电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of chemical composition on the microstructure, hardness and electrical conductivity profiles of the Bi-Ge-In alloys
In this study, the microstructure, hardness, and electrical properties of selected ternary Bi-Ge-In alloys were investigated. Isothermal sections of the Bi-Ge-In system at 25, 200, and 300 ° C were extrapolated using optimized thermodynamic parameters from the literature. The used experimental techniques include optical microscopy, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS), Brinell hardness, and electrical conductivity measurements. The results of EDS phase composition analysis were compared with the calculated isothermal sections and a good overall agreement was reached. The results of the XRD were also in line with the predicted phase balance. By using ANOVA analysis and experimental results of Brinell hardness and electrical conductivity, a mathematical model was suggested for the calculation of these properties along with all composition ranges. The appropriated mathematical model was subsequently used for the prediction of hardness and electrical conductivity throughout the whole composition range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mechanical-Elastic Parameters of Reservoir Rocks with Respect to the Purpose of Permanent CO2 Storage Mechanical and Thermal Properties of Polyurethane-Palm Fronds Ash Composites Analysis of Friction stir processed surface quality of AA2098 aluminum alloy for aeronautical applications Review Of Grain Refinement Performance Of Aluminium Cast Alloys In Situ Production of B4C and FeV Enriched Composite Surface on Low Carbon Steel by Cast Sintering Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1