{"title":"首尔大学因果关系实验室@因果新闻语料库2022:通过词性标注的数据增强来检测因果关系","authors":"Juhyeon Kim, Yesong Choe, Sanghack Lee","doi":"10.18653/v1/2022.case-1.6","DOIUrl":null,"url":null,"abstract":"Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"25 1","pages":"44-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SNU-Causality Lab @ Causal News Corpus 2022: Detecting Causality by Data Augmentation via Part-of-Speech tagging\",\"authors\":\"Juhyeon Kim, Yesong Choe, Sanghack Lee\",\"doi\":\"10.18653/v1/2022.case-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"25 1\",\"pages\":\"44-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SNU-Causality Lab @ Causal News Corpus 2022: Detecting Causality by Data Augmentation via Part-of-Speech tagging
Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.