Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris
{"title":"用于微结构的3D气溶胶喷射®打印:优点和局限性","authors":"Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris","doi":"10.36922/ijb.0257","DOIUrl":null,"url":null,"abstract":"Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"61 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Aerosol Jet® printing for microstructuring: Advantages and limitations\",\"authors\":\"Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris\",\"doi\":\"10.36922/ijb.0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.0257\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.0257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D Aerosol Jet® printing for microstructuring: Advantages and limitations
Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.