用于微结构的3D气溶胶喷射®打印:优点和局限性

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-06-28 DOI:10.36922/ijb.0257
Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris
{"title":"用于微结构的3D气溶胶喷射®打印:优点和局限性","authors":"Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris","doi":"10.36922/ijb.0257","DOIUrl":null,"url":null,"abstract":"Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"61 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Aerosol Jet® printing for microstructuring: Advantages and limitations\",\"authors\":\"Miriam Seiti, Olivier Degryse, Rosalba Monica Ferraro, S. Giliani, V. Bloemen, E. Ferraris\",\"doi\":\"10.36922/ijb.0257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.\",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.0257\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.0257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶喷射®印刷(AJ®P)是一种直接书写印刷技术,可在自由形式的基材上沉积功能雾化溶液。它的潜力已被广泛应用于印刷电子(PE)的二维(2D)微尺度结构,并迅速向表面结构和生物界面方向发展。然而,将其作为一种三维(3D)打印技术进行开发的研究有限。在这项研究中,我们通过采用三种提出的3D AJ®P策略(连续喷射沉积,逐层沉积和逐点沉积),研究了AJ®P在三种油墨的3D微结构中的能力,以及它们的优点和局限性。特别是,在不同宽高比和分辨率下,研究了基于纳米银(AgNPs)-、聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)-和胶原基油墨的日益复杂的3D微结构。生物相容性测定也用于评估油墨对选定细胞系的细胞毒性作用,包括神经元和成骨细胞系。结果表明,不仅可以打印不同纵横比的微柱阵列(AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5,胶原- ars ~ 2.5),还可以打印密集复杂(但重复性低)的叶状或片状结构(特别是使用agnps基油墨)和晶格单元(胶原基油墨)。具体来说,这项研究表明,3D AJ®打印微结构的制造只有在一组特定的打印参数下才有可能实现,并且在打印过程中,油墨(共)溶剂的快速干燥现象是非常重要的。此外,有关油墨生物相容性的数据显示,基于agnps的油墨具有较高的细胞毒性水平,而基于PEDOT:PSS和胶原蛋白的油墨具有较低的细胞毒性水平。总之,本文提供了3D AJ®P微结构的墨水开发和打印策略的一般指导方针,开放其在生命科学(组织工程,生物电子接口),电子学和微制造领域的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Aerosol Jet® printing for microstructuring: Advantages and limitations
Aerosol Jet® printing (AJ®P) is a direct writing printing technology that deposits functional aerosolized solutions on free-form substrates. Its potential has been widely adopted for two-dimensional (2D) microscale constructs in printed electronics (PE), and it is rapidly growing toward surface structuring and biological interfaces. However, limited research has been devoted to its exploitation as a three-dimensional (3D) printing technique. In this study, we investigated AJ®P capabilities for 3D microstructuring of three inks, as well as their advantages and limitations by employing three proposed 3D AJ®P strategies (continuous jet deposition, layer-by-layer, and point-wise). In particular, 3D microstructures of increasing complexity based on silver nanoparticle (AgNPs)-, poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS)-, and collagen-based inks were investigated at various aspect ratios and resolutions. Biocompatibility assays were also performed to evaluate inks cytotoxicity effects on selected cellular lineages, including neuronal and osteoblast cell lines. Results show the possibility to print not only arrays of micropillars of different aspect ratios (AgNPs-ARs ~ 20, PEDOT:PSS-ARs ~ 4.5, collagen-ARs ~ 2.5), but also dense and complex (yet low reproducible) leaf- or flake-like structures (especially with the AgNPs-based ink), and lattice units (collagen-based ink). Specifically, this study demonstrates that the fabrication of 3D AJ®-printed microstructures is possible only with a specific set of printing parameters, and firmly depends on the ink (co-)solvents fast-drying phenomena during the printing process. Furthermore, the data concerning inks biocompatibility revealed high cytotoxicity levels for the AgNPs-based ink, while low ones for the PEDOT:PSS and the collagen-based inks. In conclusion, the paper provides general guidelines with respect to ink development and print strategies for 3D AJ®P microstructuring, opening its adoption in a vast range of applications in life science (tissue engineering, bioelectronic interfaces), electronics, and micromanufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants Designing a 3D-printed medical implant with mechanically macrostructural topology and microbionic lattices: A novel wedge-shaped spacer for high tibial osteotomy and biomechanical study PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells Building a degradable scaffold with 3D printing using Masquelet technique to promote osteoblast differentiation and angiogenesis in chronic tibial osteomyelitis with bone defects Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1