雾云环境下物联网应用任务卸载的功耗性能优化模型

Rojin Naseri, A. Asadi, Mohammad Abdollahi Azgomi
{"title":"雾云环境下物联网应用任务卸载的功耗性能优化模型","authors":"Rojin Naseri, A. Asadi, Mohammad Abdollahi Azgomi","doi":"10.1109/rtest56034.2022.9849916","DOIUrl":null,"url":null,"abstract":"Task offloading is a solution to compensate for resource constraints on the Internet of Things (IoT). Deciding on the location of offloading is very important. The IoT systems provide a three-tier (IoT-fog-cloud) architecture and use the locations of cloud and fog for task offloading. Fog is a more suitable location for task offloading than cloud in terms of energy consumption and response time, and this paper aims to optimize these criteria in IoT systems. In this paper, fog is modeled by queuing theory, and the minimum number of its servers is determined based on its availability by the binary search algorithm and reinforcement learning policy iteration algorithm. Different scenarios are considered for evaluating the impact of different parameters on the cost of the fog. The proposed dispatch policy improves the results by 31% compared to the policies of Slowest Server First, Fastest Server First, and Randomly Chosen Server.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"28 1","pages":"1-8"},"PeriodicalIF":0.5000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Power-Performance Optimization in Fog-Cloud Environment by Task Off-Loading of IoT Applications\",\"authors\":\"Rojin Naseri, A. Asadi, Mohammad Abdollahi Azgomi\",\"doi\":\"10.1109/rtest56034.2022.9849916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task offloading is a solution to compensate for resource constraints on the Internet of Things (IoT). Deciding on the location of offloading is very important. The IoT systems provide a three-tier (IoT-fog-cloud) architecture and use the locations of cloud and fog for task offloading. Fog is a more suitable location for task offloading than cloud in terms of energy consumption and response time, and this paper aims to optimize these criteria in IoT systems. In this paper, fog is modeled by queuing theory, and the minimum number of its servers is determined based on its availability by the binary search algorithm and reinforcement learning policy iteration algorithm. Different scenarios are considered for evaluating the impact of different parameters on the cost of the fog. The proposed dispatch policy improves the results by 31% compared to the policies of Slowest Server First, Fastest Server First, and Randomly Chosen Server.\",\"PeriodicalId\":38446,\"journal\":{\"name\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"volume\":\"28 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rtest56034.2022.9849916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rtest56034.2022.9849916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

任务卸载是一种补偿物联网(IoT)资源限制的解决方案。确定卸货地点是非常重要的。物联网系统提供三层(物联网-雾-云)架构,并使用云和雾的位置进行任务卸载。在能耗和响应时间方面,雾是比云更适合任务卸载的位置,本文旨在优化物联网系统中的这些标准。本文采用排队理论对雾进行建模,利用二叉搜索算法和强化学习策略迭代算法根据雾的可用性确定雾的最小服务器数量。为了评估不同参数对雾损失的影响,考虑了不同的情景。与最慢服务器优先、最快服务器优先和随机选择服务器的策略相比,所提出的调度策略的结果提高了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model for Power-Performance Optimization in Fog-Cloud Environment by Task Off-Loading of IoT Applications
Task offloading is a solution to compensate for resource constraints on the Internet of Things (IoT). Deciding on the location of offloading is very important. The IoT systems provide a three-tier (IoT-fog-cloud) architecture and use the locations of cloud and fog for task offloading. Fog is a more suitable location for task offloading than cloud in terms of energy consumption and response time, and this paper aims to optimize these criteria in IoT systems. In this paper, fog is modeled by queuing theory, and the minimum number of its servers is determined based on its availability by the binary search algorithm and reinforcement learning policy iteration algorithm. Different scenarios are considered for evaluating the impact of different parameters on the cost of the fog. The proposed dispatch policy improves the results by 31% compared to the policies of Slowest Server First, Fastest Server First, and Randomly Chosen Server.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
17
期刊最新文献
Agnostic Hardware-Accelerated Operating System for Low-End IoT Controlling High-Performance Platform Uncertainties with Timing Diversity The Role of Causality in a Formal Definition of Timing Anomalies Analyzing Fixed Task Priority Based Memory Centric Scheduler for the 3-Phase Task Model On the Trade-offs between Generalization and Specialization in Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1