预测未来技能的大数据分析

A. Telukdarie, M. Munsamy, M. Gaula
{"title":"预测未来技能的大数据分析","authors":"A. Telukdarie, M. Munsamy, M. Gaula","doi":"10.1109/IEEM50564.2021.9673039","DOIUrl":null,"url":null,"abstract":"The ability to predict skills of the future is fundamental in this rapidly changing global environment. The ability to predict and invest in the appropriate skills could prove to be a key differentiator for country specific growth. Global competitiveness, employment, technological investments, and social-economic dependencies are drivers to capacity development to predict future skills. The current approaches include a combination of expanding on current skill demand, adoption of economic indicators or survey-based forecasting. The challenge is the inclusion of future trends, specifically the ability to forecast new skills or combinations of existing skills. This research explores a novel method in adopting research publications to predict new/ undetermined skills requirements. This study downloads 700 000 papers, develops a multilayer data analysis protocol, screens and provides insights into the adoption of research publications analysis for the prediction of future skills.","PeriodicalId":6818,"journal":{"name":"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"101 1","pages":"411-415"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data Analysis for Predicting Future Skills\",\"authors\":\"A. Telukdarie, M. Munsamy, M. Gaula\",\"doi\":\"10.1109/IEEM50564.2021.9673039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to predict skills of the future is fundamental in this rapidly changing global environment. The ability to predict and invest in the appropriate skills could prove to be a key differentiator for country specific growth. Global competitiveness, employment, technological investments, and social-economic dependencies are drivers to capacity development to predict future skills. The current approaches include a combination of expanding on current skill demand, adoption of economic indicators or survey-based forecasting. The challenge is the inclusion of future trends, specifically the ability to forecast new skills or combinations of existing skills. This research explores a novel method in adopting research publications to predict new/ undetermined skills requirements. This study downloads 700 000 papers, develops a multilayer data analysis protocol, screens and provides insights into the adoption of research publications analysis for the prediction of future skills.\",\"PeriodicalId\":6818,\"journal\":{\"name\":\"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":\"101 1\",\"pages\":\"411-415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM50564.2021.9673039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM50564.2021.9673039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个快速变化的全球环境中,预测未来技能的能力至关重要。预测和投资于适当技能的能力可能证明是具体国家增长的关键区别因素。全球竞争力、就业、技术投资和社会经济依赖关系是预测未来技能的能力发展的驱动因素。目前的方法包括扩大当前的技能需求,采用经济指标或基于调查的预测。挑战在于包含未来趋势,特别是预测新技能或现有技能组合的能力。本研究探索了一种采用研究出版物来预测新的/不确定的技能需求的新方法。这项研究下载了70万篇论文,开发了一个多层数据分析协议,筛选并提供了对采用研究出版物分析预测未来技能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data Analysis for Predicting Future Skills
The ability to predict skills of the future is fundamental in this rapidly changing global environment. The ability to predict and invest in the appropriate skills could prove to be a key differentiator for country specific growth. Global competitiveness, employment, technological investments, and social-economic dependencies are drivers to capacity development to predict future skills. The current approaches include a combination of expanding on current skill demand, adoption of economic indicators or survey-based forecasting. The challenge is the inclusion of future trends, specifically the ability to forecast new skills or combinations of existing skills. This research explores a novel method in adopting research publications to predict new/ undetermined skills requirements. This study downloads 700 000 papers, develops a multilayer data analysis protocol, screens and provides insights into the adoption of research publications analysis for the prediction of future skills.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representing Control Software Functionality as Part of a Modular, Mechatronic Construction Kit Situational Awareness and Flight Approach Phase Event Recognition Based on Psychophysiological Measurements The Robust Optimization Approach for the Community Group Purchase Joint Order Fulfillment and Delivery Problem Application of the Multistage One-shot Decision-making Approach to an IT Project in the Central Bank of Oman A Review on Electric Bus Charging Scheduling from Viewpoints of Vehicle Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1