Devadass Jessy Mercy, Karthick Harini, Swaminathan Madhumitha, Chinnadurai Anitha, Jayakumar Iswariya, K. Girigoswami, A. Girigoswami
{"title":"ph响应聚合物纳米结构在癌症治疗中的应用","authors":"Devadass Jessy Mercy, Karthick Harini, Swaminathan Madhumitha, Chinnadurai Anitha, Jayakumar Iswariya, K. Girigoswami, A. Girigoswami","doi":"10.55713/jmmm.v33i2.1609","DOIUrl":null,"url":null,"abstract":"Responsive polymeric nanostructures are being designed to improve the efficiency of existing treatment techniques by delivering therapeutics in precise locations. The properties of the particles can be altered to act as a probe for imaging applications also. Hence, an effective theranostic agent can be tailor-made to meet the requirements. The pH variability has aroused considerable interest in nano-responsive-stimulus production since the mild acidic condition is a hallmark of the tumor microenvironment. The cargo sealed inside the carrier will be released either by swelling or disassembly of the carrier as they meet a pH drop. The modification strategy for the synthesis of pH-responsive polymers is discussed in the manuscript. Fabrication of pH-responsive theranostic agents can conquer major limitations of conventional treatment techniques. Herein we reported imperative insights on recent pH-sensitive polymeric nanomaterials for the treatment of various disease conditions, especially cancer. ","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"pH-responsive polymeric nanostructures for cancer theranostics\",\"authors\":\"Devadass Jessy Mercy, Karthick Harini, Swaminathan Madhumitha, Chinnadurai Anitha, Jayakumar Iswariya, K. Girigoswami, A. Girigoswami\",\"doi\":\"10.55713/jmmm.v33i2.1609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Responsive polymeric nanostructures are being designed to improve the efficiency of existing treatment techniques by delivering therapeutics in precise locations. The properties of the particles can be altered to act as a probe for imaging applications also. Hence, an effective theranostic agent can be tailor-made to meet the requirements. The pH variability has aroused considerable interest in nano-responsive-stimulus production since the mild acidic condition is a hallmark of the tumor microenvironment. The cargo sealed inside the carrier will be released either by swelling or disassembly of the carrier as they meet a pH drop. The modification strategy for the synthesis of pH-responsive polymers is discussed in the manuscript. Fabrication of pH-responsive theranostic agents can conquer major limitations of conventional treatment techniques. Herein we reported imperative insights on recent pH-sensitive polymeric nanomaterials for the treatment of various disease conditions, especially cancer. \",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i2.1609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
pH-responsive polymeric nanostructures for cancer theranostics
Responsive polymeric nanostructures are being designed to improve the efficiency of existing treatment techniques by delivering therapeutics in precise locations. The properties of the particles can be altered to act as a probe for imaging applications also. Hence, an effective theranostic agent can be tailor-made to meet the requirements. The pH variability has aroused considerable interest in nano-responsive-stimulus production since the mild acidic condition is a hallmark of the tumor microenvironment. The cargo sealed inside the carrier will be released either by swelling or disassembly of the carrier as they meet a pH drop. The modification strategy for the synthesis of pH-responsive polymers is discussed in the manuscript. Fabrication of pH-responsive theranostic agents can conquer major limitations of conventional treatment techniques. Herein we reported imperative insights on recent pH-sensitive polymeric nanomaterials for the treatment of various disease conditions, especially cancer.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.