M. A. Lawrence, A. Obour, J. Holman, L. Simon, L. Haag, K. Roozeboom
{"title":"旱地免耕制度下策略耕作对作物产量和土壤性质的影响","authors":"M. A. Lawrence, A. Obour, J. Holman, L. Simon, L. Haag, K. Roozeboom","doi":"10.4148/2378-5977.8487","DOIUrl":null,"url":null,"abstract":"Summary Implementing strategic tillage (ST) in otherwise long-term no-till (NT) systems could control herbicide resistant weeds and increase profitability of crop production in semi-arid dryland cropping systems. For the purpose of this study, ST is defined as a single tillage event (once every 6-10 years) in an otherwise NT system to reduce density of herbicide tolerant grass weeds. However, there is little information on the long-term (>5 years) effects of ST on soil health parameters and crop yields. This study used long-term tillage and crop rotation plots established in 1976 at the Kansas State University Agriculture Research Center in Hays, KS. Treatments include three rotations: continuous wheat (WW), wheat-sorghum-fallow (WSF), and wheat-fallow (WF); and two tillage regimes: no-till (NT) and reduced tillage (RT). In 2016, a new tillage treatment, ST, was added to control herbicide resistant (HR) grass weeds and to mix soil to reduce nutrient and pH stratification. Soil samples were collected following wheat harvest in 2022 to investigate soil properties after 5 years of ST. Results of the 2022 sampling showed rotation and tillage had no significant effect ( P > 0.05) on bulk density. However, bulk density was least in the 0-to-2-inch soil depth compared to the 2-to 6-inch and 6-to 12-inch depths, with values of 1.16, 1.44, and 1.39 g/cm 3 , respectively. Soil organic carbon (SOC) was greatest in the 0-to 2-inch soil depth. The SOC concentration in soils under NT was not different compared to ST, whereas soils under RT had 8% less SOC than NT. Wind-erodible fraction (WEF) was not different among tillage","PeriodicalId":17773,"journal":{"name":"Kansas Agricultural Experiment Station Research Reports","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Influence of Strategic Tillage on Crop Yields and Soil Properties in Dryland No-Tillage Systems\",\"authors\":\"M. A. Lawrence, A. Obour, J. Holman, L. Simon, L. Haag, K. Roozeboom\",\"doi\":\"10.4148/2378-5977.8487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Implementing strategic tillage (ST) in otherwise long-term no-till (NT) systems could control herbicide resistant weeds and increase profitability of crop production in semi-arid dryland cropping systems. For the purpose of this study, ST is defined as a single tillage event (once every 6-10 years) in an otherwise NT system to reduce density of herbicide tolerant grass weeds. However, there is little information on the long-term (>5 years) effects of ST on soil health parameters and crop yields. This study used long-term tillage and crop rotation plots established in 1976 at the Kansas State University Agriculture Research Center in Hays, KS. Treatments include three rotations: continuous wheat (WW), wheat-sorghum-fallow (WSF), and wheat-fallow (WF); and two tillage regimes: no-till (NT) and reduced tillage (RT). In 2016, a new tillage treatment, ST, was added to control herbicide resistant (HR) grass weeds and to mix soil to reduce nutrient and pH stratification. Soil samples were collected following wheat harvest in 2022 to investigate soil properties after 5 years of ST. Results of the 2022 sampling showed rotation and tillage had no significant effect ( P > 0.05) on bulk density. However, bulk density was least in the 0-to-2-inch soil depth compared to the 2-to 6-inch and 6-to 12-inch depths, with values of 1.16, 1.44, and 1.39 g/cm 3 , respectively. Soil organic carbon (SOC) was greatest in the 0-to 2-inch soil depth. The SOC concentration in soils under NT was not different compared to ST, whereas soils under RT had 8% less SOC than NT. Wind-erodible fraction (WEF) was not different among tillage\",\"PeriodicalId\":17773,\"journal\":{\"name\":\"Kansas Agricultural Experiment Station Research Reports\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kansas Agricultural Experiment Station Research Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4148/2378-5977.8487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kansas Agricultural Experiment Station Research Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4148/2378-5977.8487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing the Influence of Strategic Tillage on Crop Yields and Soil Properties in Dryland No-Tillage Systems
Summary Implementing strategic tillage (ST) in otherwise long-term no-till (NT) systems could control herbicide resistant weeds and increase profitability of crop production in semi-arid dryland cropping systems. For the purpose of this study, ST is defined as a single tillage event (once every 6-10 years) in an otherwise NT system to reduce density of herbicide tolerant grass weeds. However, there is little information on the long-term (>5 years) effects of ST on soil health parameters and crop yields. This study used long-term tillage and crop rotation plots established in 1976 at the Kansas State University Agriculture Research Center in Hays, KS. Treatments include three rotations: continuous wheat (WW), wheat-sorghum-fallow (WSF), and wheat-fallow (WF); and two tillage regimes: no-till (NT) and reduced tillage (RT). In 2016, a new tillage treatment, ST, was added to control herbicide resistant (HR) grass weeds and to mix soil to reduce nutrient and pH stratification. Soil samples were collected following wheat harvest in 2022 to investigate soil properties after 5 years of ST. Results of the 2022 sampling showed rotation and tillage had no significant effect ( P > 0.05) on bulk density. However, bulk density was least in the 0-to-2-inch soil depth compared to the 2-to 6-inch and 6-to 12-inch depths, with values of 1.16, 1.44, and 1.39 g/cm 3 , respectively. Soil organic carbon (SOC) was greatest in the 0-to 2-inch soil depth. The SOC concentration in soils under NT was not different compared to ST, whereas soils under RT had 8% less SOC than NT. Wind-erodible fraction (WEF) was not different among tillage