沿海城市和邻近边缘海域气溶胶胺的不同特征和来源贡献

IF 2 4区 环境科学与生态学 Q3 CHEMISTRY, ANALYTICAL Environmental Chemistry Pub Date : 2021-08-23 DOI:10.1071/en21070
Zongjun Xu, Shengqian Zhou, Yucheng Zhu, Ying Chen
{"title":"沿海城市和邻近边缘海域气溶胶胺的不同特征和来源贡献","authors":"Zongjun Xu, Shengqian Zhou, Yucheng Zhu, Ying Chen","doi":"10.1071/en21070","DOIUrl":null,"url":null,"abstract":"Environmental context Amines in the atmosphere play important roles in atmospheric chemistry and have potential climate effects. We characterise the concentrations, size distributions and chemical pathways of aerosol aminiums over a coastal city and marginal seas, and estimated the contribution of marine biogenic sources. This study can facilitate our understanding about the interactions between human activities, biogenic emissions and the atmospheric environment. Abstract Atmospheric amines are gaining more and more attention in the field of atmospheric chemistry owing to their important roles in new particle formation and growth. In this study, aerosol aminiums over a coastal city (Shanghai) and the Yellow and East China seas (YECS) were characterised. The concentrations of NH4+, dimethylaminium (DMAH+) and trimethylaminium + diethylaminium (TMDEAH+) over Shanghai were all found to be higher in the winter of 2018 than in the summer of 2019, suggesting their non-negligible terrestrial contributions. DMAH+ and TMDEAH+ concentrations over the YECS in summer were closely correlated and linked to surface phytoplankton biomass, implying that marine biogenic sources might be a predominant contributor to aminiums at this time. Aminiums over Shanghai generally showed a bimodal distribution with a main peak in droplet mode and a secondary peak in condensation mode, suggesting the notable contribution of aqueous-phase or heterogeneous reaction to the formation of aminiums. In contrast, aminiums over the YECS often showed a unimodal distribution, which may be caused by the competition between amines and NH3 for reaction with acidic compounds. We estimated the contributions of marine biogenic sources, ~73.6 % to DMAH+ and 80.1 % to TMDEAH+ over the YECS, using methanesulfonate/non-sea-salt SO42– as an indicator. Our results suggest that marine biogenic emission of amines from China’s marginal seas may have a potential impact on coastal cities, and this source should be considered in modelling new particle formation and air quality in coastal areas.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Different characteristics and source contributions to aerosol aminiums over a coastal city and adjacent marginal seas\",\"authors\":\"Zongjun Xu, Shengqian Zhou, Yucheng Zhu, Ying Chen\",\"doi\":\"10.1071/en21070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental context Amines in the atmosphere play important roles in atmospheric chemistry and have potential climate effects. We characterise the concentrations, size distributions and chemical pathways of aerosol aminiums over a coastal city and marginal seas, and estimated the contribution of marine biogenic sources. This study can facilitate our understanding about the interactions between human activities, biogenic emissions and the atmospheric environment. Abstract Atmospheric amines are gaining more and more attention in the field of atmospheric chemistry owing to their important roles in new particle formation and growth. In this study, aerosol aminiums over a coastal city (Shanghai) and the Yellow and East China seas (YECS) were characterised. The concentrations of NH4+, dimethylaminium (DMAH+) and trimethylaminium + diethylaminium (TMDEAH+) over Shanghai were all found to be higher in the winter of 2018 than in the summer of 2019, suggesting their non-negligible terrestrial contributions. DMAH+ and TMDEAH+ concentrations over the YECS in summer were closely correlated and linked to surface phytoplankton biomass, implying that marine biogenic sources might be a predominant contributor to aminiums at this time. Aminiums over Shanghai generally showed a bimodal distribution with a main peak in droplet mode and a secondary peak in condensation mode, suggesting the notable contribution of aqueous-phase or heterogeneous reaction to the formation of aminiums. In contrast, aminiums over the YECS often showed a unimodal distribution, which may be caused by the competition between amines and NH3 for reaction with acidic compounds. We estimated the contributions of marine biogenic sources, ~73.6 % to DMAH+ and 80.1 % to TMDEAH+ over the YECS, using methanesulfonate/non-sea-salt SO42– as an indicator. Our results suggest that marine biogenic emission of amines from China’s marginal seas may have a potential impact on coastal cities, and this source should be considered in modelling new particle formation and air quality in coastal areas.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1071/en21070\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en21070","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

摘要

大气中的胺类物质在大气化学中起着重要作用,具有潜在的气候效应。我们描述了沿海城市和边缘海域气溶胶胺的浓度、大小分布和化学途径,并估计了海洋生物源的贡献。这项研究有助于我们了解人类活动、生物排放与大气环境之间的相互作用。摘要大气胺类化合物由于在新粒子的形成和生长中起着重要的作用,在大气化学领域受到越来越多的关注。在这项研究中,气溶胶胺在沿海城市(上海)和黄海和东海(yess)的特征。2018年冬季,上海上空NH4+、二甲胺(DMAH+)和三甲胺+二乙胺(TMDEAH+)浓度均高于2019年夏季,表明它们的陆源贡献不可忽略。夏季海域DMAH+和TMDEAH+浓度与海面浮游植物生物量密切相关,表明海洋生物源可能是这一时期氨的主要来源。上海地区的氨总体上呈现出以液滴模式为主峰、冷凝模式为次峰的双峰分布,表明水相或非均相反应对氨的形成有显著贡献。相比之下,在yec上的胺通常呈现单峰分布,这可能是由于胺和NH3与酸性化合物反应时相互竞争造成的。以甲烷磺酸盐/非海盐SO42 -为指标,我们估计了海洋生物源对DMAH+的贡献为73.6%,对TMDEAH+的贡献为80.1%。我们的研究结果表明,来自中国边缘海域的海洋生物排放胺可能对沿海城市产生潜在影响,在模拟沿海地区新颗粒形成和空气质量时应考虑这一来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different characteristics and source contributions to aerosol aminiums over a coastal city and adjacent marginal seas
Environmental context Amines in the atmosphere play important roles in atmospheric chemistry and have potential climate effects. We characterise the concentrations, size distributions and chemical pathways of aerosol aminiums over a coastal city and marginal seas, and estimated the contribution of marine biogenic sources. This study can facilitate our understanding about the interactions between human activities, biogenic emissions and the atmospheric environment. Abstract Atmospheric amines are gaining more and more attention in the field of atmospheric chemistry owing to their important roles in new particle formation and growth. In this study, aerosol aminiums over a coastal city (Shanghai) and the Yellow and East China seas (YECS) were characterised. The concentrations of NH4+, dimethylaminium (DMAH+) and trimethylaminium + diethylaminium (TMDEAH+) over Shanghai were all found to be higher in the winter of 2018 than in the summer of 2019, suggesting their non-negligible terrestrial contributions. DMAH+ and TMDEAH+ concentrations over the YECS in summer were closely correlated and linked to surface phytoplankton biomass, implying that marine biogenic sources might be a predominant contributor to aminiums at this time. Aminiums over Shanghai generally showed a bimodal distribution with a main peak in droplet mode and a secondary peak in condensation mode, suggesting the notable contribution of aqueous-phase or heterogeneous reaction to the formation of aminiums. In contrast, aminiums over the YECS often showed a unimodal distribution, which may be caused by the competition between amines and NH3 for reaction with acidic compounds. We estimated the contributions of marine biogenic sources, ~73.6 % to DMAH+ and 80.1 % to TMDEAH+ over the YECS, using methanesulfonate/non-sea-salt SO42– as an indicator. Our results suggest that marine biogenic emission of amines from China’s marginal seas may have a potential impact on coastal cities, and this source should be considered in modelling new particle formation and air quality in coastal areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry
Environmental Chemistry 环境科学-分析化学
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged. While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding. Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited. Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
A review of inorganic contaminants in Australian marine mammals, birds and turtles Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Dedication to Professor Kevin Francesconi, father of organoarsenicals in the environment Soil decontamination by natural minerals: a comparison study of chalcopyrite and pyrite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1