松木的潮气膨胀和收缩与机器人组装家具元件的敏感性

Wojciech Turbański, M. Sydor, Łukasz Matwiej, K. Wiaderek
{"title":"松木的潮气膨胀和收缩与机器人组装家具元件的敏感性","authors":"Wojciech Turbański, M. Sydor, Łukasz Matwiej, K. Wiaderek","doi":"10.5604/01.3001.0015.5274","DOIUrl":null,"url":null,"abstract":"Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.\n\n","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moisture swelling and shrinkage of pine wood versus susceptibility to robotic assembly of furniture elements\",\"authors\":\"Wojciech Turbański, M. Sydor, Łukasz Matwiej, K. Wiaderek\",\"doi\":\"10.5604/01.3001.0015.5274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.\\n\\n\",\"PeriodicalId\":8020,\"journal\":{\"name\":\"Annals of WULS, Forestry and Wood Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of WULS, Forestry and Wood Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.5274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of WULS, Forestry and Wood Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.5274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

松木的潮气膨胀和收缩以及对家具元件机器人装配的敏感性。背景和目标。加工工艺、储存条件和木材性能影响木件的实际尺寸。他们决定通过实验来检查由所选木材制成的样品的尺寸在不同的储存条件(典型的工业环境)的影响下是如何变化的。特别是这些变化将如何影响易组装的内饰框架轨道,形成一个盒子接头。材料与方法。测试是在苏格兰松木制成的三个系列轨道上进行的。每个测试系列由12个元素组成。首先,测量了箱体接头的5个尺寸;然后,将每个系列暴露在不同的条件下:在工业大厅(RH = 29-48%, t = 16-24℃),在压缩室内(RH = 24-51%, t = 13-27℃)和室外(RH = 20-50%, t = 3-23℃)。35天后,再次测量这些尺寸。结果。结果发现,在生产车间和压缩机房存放的样品,其平均含水率降低,尺寸偏差增大。在室外贮存时,样品的平均含水率没有变化,但尺寸偏差明显增加。讨论。木质元素的储存增加了与指定尺寸的偏差。暴露于水分含量和环境温度的反复变化中,即使没有改变元素的最终水分含量,也会导致比在更稳定的条件下储存更大的尺寸变化,从而降低木材的水分含量。结论。木材的收缩和膨胀由于其水分含量的变化是不完全可逆的,因此,除了在储存期间保持适当的温度和空气湿度外,重要的是保持这些条件不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moisture swelling and shrinkage of pine wood versus susceptibility to robotic assembly of furniture elements
Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paper recycling as an element of sustainable development Analysis of the level of knowledge of the local community about Bialowieza Forest Impact of Seat and Back Angle Settings on Seating Furniture Quality: An Experimental Study Smart design upcycling of post-production display panels into new creativematerials to support the sustainable development of a circular economy inthe furniture industry Transport as a Factor in the Location Selection Process of Timber Firms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1