基于Chebyshev谱配置法的微极流体通过可渗透平板边界层流动和传热的级数方法

T. M. Agbaje, G. Makanda
{"title":"基于Chebyshev谱配置法的微极流体通过可渗透平板边界层流动和传热的级数方法","authors":"T. M. Agbaje, G. Makanda","doi":"10.1155/2022/4943306","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the applicability of the large parameter spectral perturbation method (LSPM) to a coupled system of partial differential equations that cannot be solved exactly. The LSPM is a numerical method that employs the Chebyshev spectral collocation method in the solution of a sequence of ordinary differential equations (ODEs) that are derived from decomposing coupled systems of nonlinear partial differential equations (PDEs) using series expansion about a large parameter. The validity of the LSPM is applied to the problem of boundary layer flow and heat transfer in a micropolar fluid past a permeable flat plate in the presence of heat generation and thermal radiation. The coupled nature of the PDEs that define the problem under investigation precludes the option of using series-based methods that seek to generate analytical solutions even in the presence of small or large parameters. The present study demonstrates that the LSPM can easily overcome this limitation while giving very accurate results in a computationally efficient manner. For qualitative validation of the results and the numerical method used, calculations were carried out to graphically obtain the velocity, microrotation, and temperature profiles for selected physical parameter values. The results obtained were found to correlate with the results from a published literature. For quantitative confirmation of our findings, the LSPM numerical solutions were again validated against known results from the literature and against results obtained using the multidomain bivariate spectral quasilinearisation method (MD-BSQLM), and the results were observed to be in perfect agreement. Further accuracy validation is displayed by using residual error and solution error analysis on the governing PDEs and their underlying solutions. This study’s findings indicate that the heat generation and thermal radiation parameters have related effects on the temperature profile, enhancing both the fluid temperature and the thermal boundary layer thickness.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"49 1","pages":"4943306:1-4943306:24"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chebyshev Spectral Collocation Method-Based Series Approach for Boundary Layer Flow and Heat Transfer in a Micropolar Fluid past a Permeable Flat Plate\",\"authors\":\"T. M. Agbaje, G. Makanda\",\"doi\":\"10.1155/2022/4943306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the applicability of the large parameter spectral perturbation method (LSPM) to a coupled system of partial differential equations that cannot be solved exactly. The LSPM is a numerical method that employs the Chebyshev spectral collocation method in the solution of a sequence of ordinary differential equations (ODEs) that are derived from decomposing coupled systems of nonlinear partial differential equations (PDEs) using series expansion about a large parameter. The validity of the LSPM is applied to the problem of boundary layer flow and heat transfer in a micropolar fluid past a permeable flat plate in the presence of heat generation and thermal radiation. The coupled nature of the PDEs that define the problem under investigation precludes the option of using series-based methods that seek to generate analytical solutions even in the presence of small or large parameters. The present study demonstrates that the LSPM can easily overcome this limitation while giving very accurate results in a computationally efficient manner. For qualitative validation of the results and the numerical method used, calculations were carried out to graphically obtain the velocity, microrotation, and temperature profiles for selected physical parameter values. The results obtained were found to correlate with the results from a published literature. For quantitative confirmation of our findings, the LSPM numerical solutions were again validated against known results from the literature and against results obtained using the multidomain bivariate spectral quasilinearisation method (MD-BSQLM), and the results were observed to be in perfect agreement. Further accuracy validation is displayed by using residual error and solution error analysis on the governing PDEs and their underlying solutions. This study’s findings indicate that the heat generation and thermal radiation parameters have related effects on the temperature profile, enhancing both the fluid temperature and the thermal boundary layer thickness.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"49 1\",\"pages\":\"4943306:1-4943306:24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4943306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4943306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了大参数谱摄动法(LSPM)对不能精确求解的偏微分方程耦合系统的适用性。LSPM是一种利用切比雪夫谱配置法求解大参数非线性偏微分方程耦合系统分解得到的常微分方程序列的数值方法。将LSPM的有效性应用于微极流体经过可渗透平板时的边界层流动和传热问题。定义所调查问题的偏微分方程的耦合性质排除了使用基于序列的方法的选择,即使在存在小或大参数的情况下也寻求生成分析解。本研究表明,LSPM可以很容易地克服这一限制,同时以计算效率高的方式给出非常准确的结果。为了定性验证结果和所使用的数值方法,进行了计算,以图形方式获得了选定物理参数值的速度、微旋转和温度分布。所得结果与已发表文献的结果一致。为了定量证实我们的发现,LSPM数值解再次与文献中的已知结果和使用多域二元光谱拟线性化方法(MD-BSQLM)获得的结果进行了验证,结果完全一致。通过对控制偏微分方程及其底层解的残差和解差分析,进一步验证了精度。研究结果表明,产热参数和热辐射参数对温度剖面有相关的影响,流体温度和热边界层厚度都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Chebyshev Spectral Collocation Method-Based Series Approach for Boundary Layer Flow and Heat Transfer in a Micropolar Fluid past a Permeable Flat Plate
This paper demonstrates the applicability of the large parameter spectral perturbation method (LSPM) to a coupled system of partial differential equations that cannot be solved exactly. The LSPM is a numerical method that employs the Chebyshev spectral collocation method in the solution of a sequence of ordinary differential equations (ODEs) that are derived from decomposing coupled systems of nonlinear partial differential equations (PDEs) using series expansion about a large parameter. The validity of the LSPM is applied to the problem of boundary layer flow and heat transfer in a micropolar fluid past a permeable flat plate in the presence of heat generation and thermal radiation. The coupled nature of the PDEs that define the problem under investigation precludes the option of using series-based methods that seek to generate analytical solutions even in the presence of small or large parameters. The present study demonstrates that the LSPM can easily overcome this limitation while giving very accurate results in a computationally efficient manner. For qualitative validation of the results and the numerical method used, calculations were carried out to graphically obtain the velocity, microrotation, and temperature profiles for selected physical parameter values. The results obtained were found to correlate with the results from a published literature. For quantitative confirmation of our findings, the LSPM numerical solutions were again validated against known results from the literature and against results obtained using the multidomain bivariate spectral quasilinearisation method (MD-BSQLM), and the results were observed to be in perfect agreement. Further accuracy validation is displayed by using residual error and solution error analysis on the governing PDEs and their underlying solutions. This study’s findings indicate that the heat generation and thermal radiation parameters have related effects on the temperature profile, enhancing both the fluid temperature and the thermal boundary layer thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1