在连接查询上流式加权抽样

Michael Shekelyan, Graham Cormode, Qingzhi Ma, A. Shanghooshabad, P. Triantafillou
{"title":"在连接查询上流式加权抽样","authors":"Michael Shekelyan, Graham Cormode, Qingzhi Ma, A. Shanghooshabad, P. Triantafillou","doi":"10.48786/edbt.2023.24","DOIUrl":null,"url":null,"abstract":"Join queries are a fundamental database tool, capturing a range of tasks that involve linking heterogeneous data sources. However, with massive table sizes, it is often impractical to keep these in memory, and we can only take one or few streaming passes over them. Moreover, building out the full join result (e.g., linking heterogeneous data sources along quasi-identifiers) can lead to a combinatorial explosion of results due to many-to-many links. Random sampling is a natural tool to boil this oversized result down to a representative subset with well-understood statistical properties, but turns out to be a challenging task due to the combinatorial nature of the sampling domain. Existing techniques in the literature focus solely on the setting with tabular data resid-ing in main memory, and do not address aspects such as stream operation, weighted sampling and more general join operators that are urgently needed in a modern data processing context. The main contribution of this work is to meet these needs with more lightweight practical approaches. First, a bijection between the sampling problem and a graph problem is introduced to support weighted sampling and common join operators. Second, the sampling techniques are refined to minimise the number of streaming passes. Third, techniques are presented to deal with very large tables under limited memory. Finally, the proposed techniques are compared to existing approaches that rely on database indices and the results indicate substantial memory savings, reduced runtimes for ad-hoc queries and competitive amortised runtimes. All pertinent code and data can be found at:","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"17 1","pages":"298-310"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streaming Weighted Sampling over Join Queries\",\"authors\":\"Michael Shekelyan, Graham Cormode, Qingzhi Ma, A. Shanghooshabad, P. Triantafillou\",\"doi\":\"10.48786/edbt.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Join queries are a fundamental database tool, capturing a range of tasks that involve linking heterogeneous data sources. However, with massive table sizes, it is often impractical to keep these in memory, and we can only take one or few streaming passes over them. Moreover, building out the full join result (e.g., linking heterogeneous data sources along quasi-identifiers) can lead to a combinatorial explosion of results due to many-to-many links. Random sampling is a natural tool to boil this oversized result down to a representative subset with well-understood statistical properties, but turns out to be a challenging task due to the combinatorial nature of the sampling domain. Existing techniques in the literature focus solely on the setting with tabular data resid-ing in main memory, and do not address aspects such as stream operation, weighted sampling and more general join operators that are urgently needed in a modern data processing context. The main contribution of this work is to meet these needs with more lightweight practical approaches. First, a bijection between the sampling problem and a graph problem is introduced to support weighted sampling and common join operators. Second, the sampling techniques are refined to minimise the number of streaming passes. Third, techniques are presented to deal with very large tables under limited memory. Finally, the proposed techniques are compared to existing approaches that rely on database indices and the results indicate substantial memory savings, reduced runtimes for ad-hoc queries and competitive amortised runtimes. All pertinent code and data can be found at:\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"17 1\",\"pages\":\"298-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2023.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连接查询是一种基本的数据库工具,用于捕获涉及链接异构数据源的一系列任务。然而,对于巨大的表大小,将它们保存在内存中通常是不切实际的,并且我们只能对它们进行一次或几次流传递。此外,构建完整的连接结果(例如,沿着准标识符链接异构数据源)可能会由于多对多链接而导致结果的组合爆炸。随机抽样是一种自然的工具,可以将这个超大的结果归结为具有良好理解的统计属性的代表性子集,但由于抽样域的组合性质,这是一项具有挑战性的任务。文献中现有的技术仅仅关注于驻留在主存中的表格数据的设置,而没有解决现代数据处理环境中迫切需要的流操作、加权采样和更通用的连接操作等方面。这项工作的主要贡献是用更轻量级的实用方法来满足这些需求。首先,在抽样问题和图问题之间引入双射,以支持加权抽样和公共连接算子。其次,采样技术的改进,以尽量减少流的数量通过。第三,介绍了在有限内存下处理非常大的表的技术。最后,将所建议的技术与依赖数据库索引的现有方法进行比较,结果表明节省了大量内存,减少了临时查询的运行时间,并具有竞争性的分摊运行时间。有关守则及资料可于以下网址查阅:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Streaming Weighted Sampling over Join Queries
Join queries are a fundamental database tool, capturing a range of tasks that involve linking heterogeneous data sources. However, with massive table sizes, it is often impractical to keep these in memory, and we can only take one or few streaming passes over them. Moreover, building out the full join result (e.g., linking heterogeneous data sources along quasi-identifiers) can lead to a combinatorial explosion of results due to many-to-many links. Random sampling is a natural tool to boil this oversized result down to a representative subset with well-understood statistical properties, but turns out to be a challenging task due to the combinatorial nature of the sampling domain. Existing techniques in the literature focus solely on the setting with tabular data resid-ing in main memory, and do not address aspects such as stream operation, weighted sampling and more general join operators that are urgently needed in a modern data processing context. The main contribution of this work is to meet these needs with more lightweight practical approaches. First, a bijection between the sampling problem and a graph problem is introduced to support weighted sampling and common join operators. Second, the sampling techniques are refined to minimise the number of streaming passes. Third, techniques are presented to deal with very large tables under limited memory. Finally, the proposed techniques are compared to existing approaches that rely on database indices and the results indicate substantial memory savings, reduced runtimes for ad-hoc queries and competitive amortised runtimes. All pertinent code and data can be found at:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1