{"title":"水-热力土壤-植被方案与第五代宾夕法尼亚州立大学- ncar中尺度模式耦合预测雪深和土壤温度的评价","authors":"B. Narapusetty, N. Mölders","doi":"10.1175/JAM2311.1","DOIUrl":null,"url":null,"abstract":"Abstract The Hydro–Thermodynamic Soil–Vegetation Scheme (HTSVS) coupled in a two-way mode with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Meteorological Model (MM5) is evaluated for a typical snowmelt episode in the Baltic region by means of observations at 25 soil temperature, 355 snow-depth, and 344 precipitation sites that have, in total, 1000, 1775, and 1720 measurements, respectively. The performance with respect to predicted near-surface meteorological fields is evaluated using reanalysis data. Snow depth depends on snow metamorphism, sublimation, and snowfall. Because in the coupled model these processes are affected by the predicted surface radiation fluxes and cloud and precipitation processes, sensitivity studies are performed with two different cloud microphysical schemes and/or radiation schemes. Skill scores are calculated as a quality measure for the coupled model’s performance for a typical forecast range of 120 h for a typic...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"28 7 1","pages":"1827-1843"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Evaluation of Snow Depth and Soil Temperatures Predicted by the Hydro–Thermodynamic Soil–Vegetation Scheme Coupled with the Fifth-Generation Pennsylvania State University–NCAR Mesoscale Model\",\"authors\":\"B. Narapusetty, N. Mölders\",\"doi\":\"10.1175/JAM2311.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Hydro–Thermodynamic Soil–Vegetation Scheme (HTSVS) coupled in a two-way mode with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Meteorological Model (MM5) is evaluated for a typical snowmelt episode in the Baltic region by means of observations at 25 soil temperature, 355 snow-depth, and 344 precipitation sites that have, in total, 1000, 1775, and 1720 measurements, respectively. The performance with respect to predicted near-surface meteorological fields is evaluated using reanalysis data. Snow depth depends on snow metamorphism, sublimation, and snowfall. Because in the coupled model these processes are affected by the predicted surface radiation fluxes and cloud and precipitation processes, sensitivity studies are performed with two different cloud microphysical schemes and/or radiation schemes. Skill scores are calculated as a quality measure for the coupled model’s performance for a typical forecast range of 120 h for a typic...\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"28 7 1\",\"pages\":\"1827-1843\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2311.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2311.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Snow Depth and Soil Temperatures Predicted by the Hydro–Thermodynamic Soil–Vegetation Scheme Coupled with the Fifth-Generation Pennsylvania State University–NCAR Mesoscale Model
Abstract The Hydro–Thermodynamic Soil–Vegetation Scheme (HTSVS) coupled in a two-way mode with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Meteorological Model (MM5) is evaluated for a typical snowmelt episode in the Baltic region by means of observations at 25 soil temperature, 355 snow-depth, and 344 precipitation sites that have, in total, 1000, 1775, and 1720 measurements, respectively. The performance with respect to predicted near-surface meteorological fields is evaluated using reanalysis data. Snow depth depends on snow metamorphism, sublimation, and snowfall. Because in the coupled model these processes are affected by the predicted surface radiation fluxes and cloud and precipitation processes, sensitivity studies are performed with two different cloud microphysical schemes and/or radiation schemes. Skill scores are calculated as a quality measure for the coupled model’s performance for a typical forecast range of 120 h for a typic...