多光谱和雷达数据融合的各种方法在地上森林生物量建模中的应用

Q3 Agricultural and Biological Sciences Folia Forestalia Polonica, Series A Pub Date : 2023-06-01 DOI:10.2478/ffp-2023-0006
D. Movchan, A. Bilous, L. Yelistratova, A. Apostolov, A. Hodorovsky
{"title":"多光谱和雷达数据融合的各种方法在地上森林生物量建模中的应用","authors":"D. Movchan, A. Bilous, L. Yelistratova, A. Apostolov, A. Hodorovsky","doi":"10.2478/ffp-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the aboveground forest biomass (AGB) in this study. The RapidEye multispectral image and the PALSAR radar image were used in research as sources of remote sensing data. Five models for estimating forest AGB were built and analysed using data from test area in Chernihiv region (Ukrainian Polissya). Correlation and min–max accuracy have been calculated for each model to measure the model performance. Among all the data fusion approaches used in the study, the high-pass filtering method has shown the greatest efficiency.","PeriodicalId":35789,"journal":{"name":"Folia Forestalia Polonica, Series A","volume":"1 1","pages":"55 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of various approaches of multispectral and radar data fusion for modelling of aboveground forest biomass\",\"authors\":\"D. Movchan, A. Bilous, L. Yelistratova, A. Apostolov, A. Hodorovsky\",\"doi\":\"10.2478/ffp-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the aboveground forest biomass (AGB) in this study. The RapidEye multispectral image and the PALSAR radar image were used in research as sources of remote sensing data. Five models for estimating forest AGB were built and analysed using data from test area in Chernihiv region (Ukrainian Polissya). Correlation and min–max accuracy have been calculated for each model to measure the model performance. Among all the data fusion approaches used in the study, the high-pass filtering method has shown the greatest efficiency.\",\"PeriodicalId\":35789,\"journal\":{\"name\":\"Folia Forestalia Polonica, Series A\",\"volume\":\"1 1\",\"pages\":\"55 - 67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Forestalia Polonica, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ffp-2023-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Forestalia Polonica, Series A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ffp-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用多元线性回归(MLR)、高通滤波(HPF)、强度色相饱和度(IHS)、小波变换(WT)和WT + IHS混合方法5种不同的数据融合技术对地上森林生物量(AGB)进行建模。研究采用RapidEye多光谱图像和PALSAR雷达图像作为遥感数据来源。利用切尔尼耶夫地区(乌克兰波利西亚)试验区的数据,建立了估算森林AGB的5个模型并进行了分析。计算了每个模型的相关性和最小-最大精度,以衡量模型的性能。在研究中使用的所有数据融合方法中,高通滤波方法显示出最高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of various approaches of multispectral and radar data fusion for modelling of aboveground forest biomass
Abstract Five different data fusion techniques (multiple linear regression (MLR), high-pass filtering (HPF), intensity hue saturation (IHS), wavelet transformation (WT) and the hybrid method WT + IHS) have been applied to model the aboveground forest biomass (AGB) in this study. The RapidEye multispectral image and the PALSAR radar image were used in research as sources of remote sensing data. Five models for estimating forest AGB were built and analysed using data from test area in Chernihiv region (Ukrainian Polissya). Correlation and min–max accuracy have been calculated for each model to measure the model performance. Among all the data fusion approaches used in the study, the high-pass filtering method has shown the greatest efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Forestalia Polonica, Series A
Folia Forestalia Polonica, Series A Agricultural and Biological Sciences-Forestry
CiteScore
1.30
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊介绍: FOLIA FORESTALIA POLONICA, SERIES A – FORESTRY is a forest science magazine addressed to scientists, administrators and policy-makers in forestry, agroforestry, ecology, environment and resource management. The language of publication is English and papers from any region of the world are welcome.
期刊最新文献
Seasonal variation in nutrient composition in the leaves of two Bauhinia species What affects the choice of forestry profession by Ukrainian students? Approaches to research and classification of forest fuel Scots pine stands in the Left-Bank Forest-Steppe of Ukraine GIS analyses of land consolidation in case of the highly fragmentated of parcels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1