设计进化的网络-物理-社会系统:计算研究机会

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-07-03 DOI:10.1115/1.4062883
J. Allen, Anand Balu Nellippallil, Zhenjun Ming, J. Milisavljevic-Syed, F. Mistree
{"title":"设计进化的网络-物理-社会系统:计算研究机会","authors":"J. Allen, Anand Balu Nellippallil, Zhenjun Ming, J. Milisavljevic-Syed, F. Mistree","doi":"10.1115/1.4062883","DOIUrl":null,"url":null,"abstract":"\n In the context of the theme for this special issue, namely, challenges and opportunities in computing research to enable next generation engineering applications, our intent in writing this paper is to seed the dialog on furthering computing research associated with the design of cyber-physical-social systems. Cyber-Physical-Social Systems (CPSS's) are natural extensions of Cyber-Physical Systems (CPS's) that add the consideration of human interactions and cooperation with cyber systems and physical systems. CPSS's are becoming increasingly important as we face challenges such as regulating our impact on the environment, eradicating disease, transitioning to digital and sustainable manufacturing, and improving healthcare. Human stakeholders in these systems are integral to the effectiveness of these systems. One of the key features of CPSS is that the form, structure, and interactions constantly evolve to meet changes in the environment. Design of evolving CPSS include making tradeoffs amongst the cyber, the physical, and the social systems. Advances in computing and information science have given us opportunities to ask difficult, and important questions, especially those related to cyber-physical-social systems. In this paper we identify research opportunities worth investigating. We start with theoretical and mathematical frameworks for identifying and framing the problem – specifically, problem identification and formulation, data management, CPSS modeling and CPSS in action. Then we discuss issues related to the design of CPSS including decision making, computational platform support, and verification and validation. Building on this foundation, we suggest a way forward.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Evolving Cyber-Physical-Social Systems: Computational Research Opportunities\",\"authors\":\"J. Allen, Anand Balu Nellippallil, Zhenjun Ming, J. Milisavljevic-Syed, F. Mistree\",\"doi\":\"10.1115/1.4062883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the context of the theme for this special issue, namely, challenges and opportunities in computing research to enable next generation engineering applications, our intent in writing this paper is to seed the dialog on furthering computing research associated with the design of cyber-physical-social systems. Cyber-Physical-Social Systems (CPSS's) are natural extensions of Cyber-Physical Systems (CPS's) that add the consideration of human interactions and cooperation with cyber systems and physical systems. CPSS's are becoming increasingly important as we face challenges such as regulating our impact on the environment, eradicating disease, transitioning to digital and sustainable manufacturing, and improving healthcare. Human stakeholders in these systems are integral to the effectiveness of these systems. One of the key features of CPSS is that the form, structure, and interactions constantly evolve to meet changes in the environment. Design of evolving CPSS include making tradeoffs amongst the cyber, the physical, and the social systems. Advances in computing and information science have given us opportunities to ask difficult, and important questions, especially those related to cyber-physical-social systems. In this paper we identify research opportunities worth investigating. We start with theoretical and mathematical frameworks for identifying and framing the problem – specifically, problem identification and formulation, data management, CPSS modeling and CPSS in action. Then we discuss issues related to the design of CPSS including decision making, computational platform support, and verification and validation. Building on this foundation, we suggest a way forward.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062883\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本期特刊的主题背景下,即计算研究中的挑战和机遇,以实现下一代工程应用,我们写这篇论文的目的是为进一步与网络物理社会系统设计相关的计算研究提供对话。网络-物理-社会系统(CPSS)是网络-物理系统(CPS)的自然延伸,它增加了人类与网络系统和物理系统的互动和合作的考虑。当我们面临诸如调节我们对环境的影响、根除疾病、向数字化和可持续制造过渡以及改善医疗保健等挑战时,CPSS正变得越来越重要。这些系统中的人类利益相关者是这些系统有效性的组成部分。CPSS的一个关键特性是形式、结构和交互不断发展以适应环境的变化。进化CPSS的设计包括在网络系统、物理系统和社会系统之间进行权衡。计算机和信息科学的进步使我们有机会提出困难而重要的问题,特别是那些与网络-物理-社会系统有关的问题。在本文中,我们确定了值得研究的研究机会。我们从识别和构建问题的理论和数学框架开始-具体来说,问题识别和制定,数据管理,CPSS建模和CPSS的行动。然后讨论了CPSS设计的相关问题,包括决策制定、计算平台支持、验证和验证。在此基础上,我们提出了前进的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Evolving Cyber-Physical-Social Systems: Computational Research Opportunities
In the context of the theme for this special issue, namely, challenges and opportunities in computing research to enable next generation engineering applications, our intent in writing this paper is to seed the dialog on furthering computing research associated with the design of cyber-physical-social systems. Cyber-Physical-Social Systems (CPSS's) are natural extensions of Cyber-Physical Systems (CPS's) that add the consideration of human interactions and cooperation with cyber systems and physical systems. CPSS's are becoming increasingly important as we face challenges such as regulating our impact on the environment, eradicating disease, transitioning to digital and sustainable manufacturing, and improving healthcare. Human stakeholders in these systems are integral to the effectiveness of these systems. One of the key features of CPSS is that the form, structure, and interactions constantly evolve to meet changes in the environment. Design of evolving CPSS include making tradeoffs amongst the cyber, the physical, and the social systems. Advances in computing and information science have given us opportunities to ask difficult, and important questions, especially those related to cyber-physical-social systems. In this paper we identify research opportunities worth investigating. We start with theoretical and mathematical frameworks for identifying and framing the problem – specifically, problem identification and formulation, data management, CPSS modeling and CPSS in action. Then we discuss issues related to the design of CPSS including decision making, computational platform support, and verification and validation. Building on this foundation, we suggest a way forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Multi-UAV Assisted Flood Navigation of Waterborne Vehicles using Deep Reinforcement Learning Engineering-guided Deep Feature Learning for Manufacturing Process Monitoring What to consider at the development of educational programs and courses about next-generation cyber-physical systems? JCISE Special Issue: Cybersecurity in Manufacturing Robust Contact Computation in Non-Rigid Variation Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1