基于变分信息最大化的可微神经结构搜索中潜在结构分布的学习

Yaoming Wang, Yuchen Liu, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong
{"title":"基于变分信息最大化的可微神经结构搜索中潜在结构分布的学习","authors":"Yaoming Wang, Yuchen Liu, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong","doi":"10.1109/ICCV48922.2021.01209","DOIUrl":null,"url":null,"abstract":"Existing differentiable neural architecture search approaches simply assume the architectural distribution on each edge is independent of each other, which conflicts with the intrinsic properties of architecture. In this paper, we view the architectural distribution as the latent representation of specific data points. Then we propose Variational Information Maximization Neural Architecture Search (VIM-NAS) to leverage a simple yet effective convolutional neural network to model the latent representation, and optimize for a tractable variational lower bound to the mutual information between the data points and the latent representations. VIM-NAS automatically learns a nearly one-hot distribution from a continuous distribution with extremely fast convergence speed, e.g., converging with one epoch. Experimental results demonstrate VIM-NAS achieves state-of-the-art performance on various search spaces, including DARTS search space, NAS-Bench-1shot1, NAS-Bench-201, and simplified search spaces S1-S4. Specifically, VIM-NAS achieves a top-1 error rate of 2.45% and 15.80% within 10 minutes on CIFAR-10 and CIFAR-100, respectively, and a top-1 error rate of 24.0% when transferred to ImageNet.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"16 1","pages":"12292-12301"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning Latent Architectural Distribution in Differentiable Neural Architecture Search via Variational Information Maximization\",\"authors\":\"Yaoming Wang, Yuchen Liu, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong\",\"doi\":\"10.1109/ICCV48922.2021.01209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing differentiable neural architecture search approaches simply assume the architectural distribution on each edge is independent of each other, which conflicts with the intrinsic properties of architecture. In this paper, we view the architectural distribution as the latent representation of specific data points. Then we propose Variational Information Maximization Neural Architecture Search (VIM-NAS) to leverage a simple yet effective convolutional neural network to model the latent representation, and optimize for a tractable variational lower bound to the mutual information between the data points and the latent representations. VIM-NAS automatically learns a nearly one-hot distribution from a continuous distribution with extremely fast convergence speed, e.g., converging with one epoch. Experimental results demonstrate VIM-NAS achieves state-of-the-art performance on various search spaces, including DARTS search space, NAS-Bench-1shot1, NAS-Bench-201, and simplified search spaces S1-S4. Specifically, VIM-NAS achieves a top-1 error rate of 2.45% and 15.80% within 10 minutes on CIFAR-10 and CIFAR-100, respectively, and a top-1 error rate of 24.0% when transferred to ImageNet.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"16 1\",\"pages\":\"12292-12301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

现有的可微神经结构搜索方法简单地假设每条边缘上的结构分布是相互独立的,这与结构的内在属性相冲突。在本文中,我们将架构分布视为特定数据点的潜在表示。然后,我们提出了变分信息最大化神经结构搜索(vims - nas),利用简单而有效的卷积神经网络来建模潜在表示,并优化数据点和潜在表示之间互信息的可处理变分下界。VIM-NAS从连续分布中自动学习到近一热分布,收敛速度极快,如一个epoch收敛。实验结果表明,VIM-NAS在各种搜索空间(包括DARTS搜索空间、NAS-Bench-1shot1、NAS-Bench-201和简化搜索空间S1-S4)上实现了最先进的性能。其中,VIM-NAS在CIFAR-10和CIFAR-100上的10分钟top-1错误率分别为2.45%和15.80%,传输到ImageNet时的top-1错误率为24.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Latent Architectural Distribution in Differentiable Neural Architecture Search via Variational Information Maximization
Existing differentiable neural architecture search approaches simply assume the architectural distribution on each edge is independent of each other, which conflicts with the intrinsic properties of architecture. In this paper, we view the architectural distribution as the latent representation of specific data points. Then we propose Variational Information Maximization Neural Architecture Search (VIM-NAS) to leverage a simple yet effective convolutional neural network to model the latent representation, and optimize for a tractable variational lower bound to the mutual information between the data points and the latent representations. VIM-NAS automatically learns a nearly one-hot distribution from a continuous distribution with extremely fast convergence speed, e.g., converging with one epoch. Experimental results demonstrate VIM-NAS achieves state-of-the-art performance on various search spaces, including DARTS search space, NAS-Bench-1shot1, NAS-Bench-201, and simplified search spaces S1-S4. Specifically, VIM-NAS achieves a top-1 error rate of 2.45% and 15.80% within 10 minutes on CIFAR-10 and CIFAR-100, respectively, and a top-1 error rate of 24.0% when transferred to ImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1