Liang Wang, Haoyu Wang, Yu Liu, Junrui Liang, Minfan Fu
{"title":"一种全ZVS双有源桥式高集成度三端口转换器","authors":"Liang Wang, Haoyu Wang, Yu Liu, Junrui Liang, Minfan Fu","doi":"10.1109/APEC42165.2021.9487170","DOIUrl":null,"url":null,"abstract":"A novel dual-active-bridge based three-port converter (TPC) is proposed for islanded dc microgrids. The proposed converter can interface among three ports (PV source, battery, and dc-link) simultaneously with high integration. Rechargeable battery operates as an energy buffer to compensate for power mismatch between PV source and dc-link. Electric power can flow bi-directionally between the battery and dc-link. Pulse-width-modulation (PWM) on the primary side is utilized to realize the maximum power point tracking (MPPT) of PV panel. An optimized phase-shift-modulation (PSM) is introduced to regulate power flow, ensure ZVS among all MOSFETs and reduce circulating current over a wide range. To verify this concept, a 500 W rated prototype is designed. The designed prototype exhibits high efficiency in various operating modes. The experimental results agree well with the theoretical analysis.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fully ZVS Dual-Active-Bridge Based Three-Port Converter with High Integration\",\"authors\":\"Liang Wang, Haoyu Wang, Yu Liu, Junrui Liang, Minfan Fu\",\"doi\":\"10.1109/APEC42165.2021.9487170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel dual-active-bridge based three-port converter (TPC) is proposed for islanded dc microgrids. The proposed converter can interface among three ports (PV source, battery, and dc-link) simultaneously with high integration. Rechargeable battery operates as an energy buffer to compensate for power mismatch between PV source and dc-link. Electric power can flow bi-directionally between the battery and dc-link. Pulse-width-modulation (PWM) on the primary side is utilized to realize the maximum power point tracking (MPPT) of PV panel. An optimized phase-shift-modulation (PSM) is introduced to regulate power flow, ensure ZVS among all MOSFETs and reduce circulating current over a wide range. To verify this concept, a 500 W rated prototype is designed. The designed prototype exhibits high efficiency in various operating modes. The experimental results agree well with the theoretical analysis.\",\"PeriodicalId\":7050,\"journal\":{\"name\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC42165.2021.9487170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fully ZVS Dual-Active-Bridge Based Three-Port Converter with High Integration
A novel dual-active-bridge based three-port converter (TPC) is proposed for islanded dc microgrids. The proposed converter can interface among three ports (PV source, battery, and dc-link) simultaneously with high integration. Rechargeable battery operates as an energy buffer to compensate for power mismatch between PV source and dc-link. Electric power can flow bi-directionally between the battery and dc-link. Pulse-width-modulation (PWM) on the primary side is utilized to realize the maximum power point tracking (MPPT) of PV panel. An optimized phase-shift-modulation (PSM) is introduced to regulate power flow, ensure ZVS among all MOSFETs and reduce circulating current over a wide range. To verify this concept, a 500 W rated prototype is designed. The designed prototype exhibits high efficiency in various operating modes. The experimental results agree well with the theoretical analysis.