胰岛素生理浓度通过MAP激酶级联增强大鼠A10血管平滑肌细胞中血小板衍生生长因子的有丝分裂活性

Hitomi Yamada, T. Tsushima, H. Murakami, Y. Uchigata, Y. Iwamoto
{"title":"胰岛素生理浓度通过MAP激酶级联增强大鼠A10血管平滑肌细胞中血小板衍生生长因子的有丝分裂活性","authors":"Hitomi Yamada, T. Tsushima, H. Murakami, Y. Uchigata, Y. Iwamoto","doi":"10.1080/15604280214489","DOIUrl":null,"url":null,"abstract":"Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis.","PeriodicalId":14040,"journal":{"name":"International journal of experimental diabetes research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Potentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells\",\"authors\":\"Hitomi Yamada, T. Tsushima, H. Murakami, Y. Uchigata, Y. Iwamoto\",\"doi\":\"10.1080/15604280214489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis.\",\"PeriodicalId\":14040,\"journal\":{\"name\":\"International journal of experimental diabetes research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of experimental diabetes research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15604280214489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental diabetes research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15604280214489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

高胰岛素血症已被证明与糖尿病血管病变有关。血管平滑肌细胞(VSMC)的迁移和增殖是动脉粥样硬化发生的必要过程。在这项研究中,我们试图确定胰岛素是否影响大鼠VSMC细胞系(A10细胞)中血小板衍生生长因子(PDGF)诱导的有丝分裂信号。PDGF刺激的DNA合成完全依赖于Ras,因为转染显性负Ras会导致PDGF刺激的DNA合成完全丧失。DNA合成的起始是通过激活Raf-1、MEK和MAP激酶(erk1和Erk2)。用MAPK激酶(MEK)抑制剂PD98059处理细胞减弱但不消除pdgf刺激的DNA合成,这表明MAPK是DNA合成所必需的,但不是必需的。PDGF还以wortmaninin敏感的方式刺激蛋白激酶B (Akt/PKB)和p70 s6激酶(p70S6K)的磷酸化。雷帕霉素是p70S6K的一种抑制剂,能显著抑制DNA合成。低浓度胰岛素(1-10 nmol/l)对有丝分裂活性影响不大,对MAPK活性无显著影响。然而,胰岛素的存在增强了DNA合成和PDGF对MAPK的激活。胰岛素的增强作用在PD98059处理的细胞中未见。胰岛素对pdgf刺激的蛋白激酶B (Akt/PKB)和p70S6K的激活没有影响。我们得出结论,胰岛素在病理生理相关浓度下,通过增强MAPK级联的激活,至少在一定程度上增强了pdgf刺激的DNA合成。这些结果与高胰岛素血症是动脉粥样硬化发展的危险因素的观点一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells
Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of mild hypoinsulinemia on renal hypertrophy: growth hormone/insulin-like growth factor I system in mild streptozotocin diabetes. Alteration of endothelins: a common pathogenetic mechanism in chronic diabetic complications. Effect of acipimox on plasma lipids and glucose/insulin in pregnant rats. C-peptide prevents hippocampal apoptosis in type 1 diabetes. The role of reactive oxygen species in diabetes-induced anomalies in embryos of Cohen diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1