{"title":"gpu上的数据管理系统:承诺与挑战","authors":"Yi-Cheng Tu, Anand Kumar, Di Yu, Ran Rui, Ryan Wheeler","doi":"10.1145/2484838.2484871","DOIUrl":null,"url":null,"abstract":"The past decade has witnessed the popularity of push-based data management systems, in which the query executor passively receives data from either remote data sources (e.g., sensors) or I/O processes that scan database tables/files from local storage. Unlike traditional relational database management system (RDBMS) architectures that are mostly I/O-bound, push-based database systems often become heavily computation-bound since the data arrival rate could be very high. In this paper, we argue that modern multi-core hardware, especially Graphics Processing Units (GPU), provide the most cost-effective computing platform to catch up with the large amount of data streamed into a push-based database system. Based on that, we will open discussions on how to design and implement a query processing engine for such systems that run on GPUs.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"62 1","pages":"33:1-33:4"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Data management systems on GPUs: promises and challenges\",\"authors\":\"Yi-Cheng Tu, Anand Kumar, Di Yu, Ran Rui, Ryan Wheeler\",\"doi\":\"10.1145/2484838.2484871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past decade has witnessed the popularity of push-based data management systems, in which the query executor passively receives data from either remote data sources (e.g., sensors) or I/O processes that scan database tables/files from local storage. Unlike traditional relational database management system (RDBMS) architectures that are mostly I/O-bound, push-based database systems often become heavily computation-bound since the data arrival rate could be very high. In this paper, we argue that modern multi-core hardware, especially Graphics Processing Units (GPU), provide the most cost-effective computing platform to catch up with the large amount of data streamed into a push-based database system. Based on that, we will open discussions on how to design and implement a query processing engine for such systems that run on GPUs.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"62 1\",\"pages\":\"33:1-33:4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2484838.2484871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

过去十年见证了基于推送的数据管理系统的流行,其中查询执行器被动地从远程数据源(例如,传感器)或从本地存储扫描数据库表/文件的I/O进程接收数据。与主要受I/ o限制的传统关系数据库管理系统(RDBMS)体系结构不同,基于推送的数据库系统通常需要大量计算,因为数据到达率可能非常高。在本文中,我们认为现代多核硬件,特别是图形处理单元(GPU),提供了最具成本效益的计算平台,以赶上大量数据流到基于推送的数据库系统。在此基础上,我们将开始讨论如何设计和实现在gpu上运行的此类系统的查询处理引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data management systems on GPUs: promises and challenges
The past decade has witnessed the popularity of push-based data management systems, in which the query executor passively receives data from either remote data sources (e.g., sensors) or I/O processes that scan database tables/files from local storage. Unlike traditional relational database management system (RDBMS) architectures that are mostly I/O-bound, push-based database systems often become heavily computation-bound since the data arrival rate could be very high. In this paper, we argue that modern multi-core hardware, especially Graphics Processing Units (GPU), provide the most cost-effective computing platform to catch up with the large amount of data streamed into a push-based database system. Based on that, we will open discussions on how to design and implement a query processing engine for such systems that run on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1