P. Campo, Vesa Lampu, L. Anttila, Alberto Brihuega, M. Allén, M. Valkama
{"title":"低复杂度数字预失真的闭环符号算法","authors":"P. Campo, Vesa Lampu, L. Anttila, Alberto Brihuega, M. Allén, M. Valkama","doi":"10.1109/IMS30576.2020.9223904","DOIUrl":null,"url":null,"abstract":"In this paper, we study digital predistortion (DPD) based linearization with specific focus on millimeter wave (mmW) active antenna arrays. Due to the very large channel bandwidths and beam-dependence of nonlinear distortion in such systems, we propose a closed-loop DPD learning architecture, look-up table (LUT) based memory DPD models, and low-complexity sign-based estimation algorithms, such that even continuous DPD learning could be technically feasible. To this end, three different learning algorithms - sign, signed regressor, and sign-sign - are formulated for the LUT-based DPD models, such that the potential rank deficiencies, experienced in earlier methods, are avoided. Then, extensive RF measurements utilizing a state-of-the-art mmW active antenna array system at 28 GHz are carried out and reported to validate the methods. Additionally, the processing and learning complexities of the considered methods are analyzed, which together with the measured linearization performance figures allow to assess the complexity-performance tradeoffs. Overall, the results show that efficient mmW array linearization can be obtained through the proposed methods.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"29 1","pages":"841-844"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Closed-Loop Sign Algorithms for Low-Complexity Digital Predistortion\",\"authors\":\"P. Campo, Vesa Lampu, L. Anttila, Alberto Brihuega, M. Allén, M. Valkama\",\"doi\":\"10.1109/IMS30576.2020.9223904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study digital predistortion (DPD) based linearization with specific focus on millimeter wave (mmW) active antenna arrays. Due to the very large channel bandwidths and beam-dependence of nonlinear distortion in such systems, we propose a closed-loop DPD learning architecture, look-up table (LUT) based memory DPD models, and low-complexity sign-based estimation algorithms, such that even continuous DPD learning could be technically feasible. To this end, three different learning algorithms - sign, signed regressor, and sign-sign - are formulated for the LUT-based DPD models, such that the potential rank deficiencies, experienced in earlier methods, are avoided. Then, extensive RF measurements utilizing a state-of-the-art mmW active antenna array system at 28 GHz are carried out and reported to validate the methods. Additionally, the processing and learning complexities of the considered methods are analyzed, which together with the measured linearization performance figures allow to assess the complexity-performance tradeoffs. Overall, the results show that efficient mmW array linearization can be obtained through the proposed methods.\",\"PeriodicalId\":6784,\"journal\":{\"name\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"volume\":\"29 1\",\"pages\":\"841-844\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS30576.2020.9223904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9223904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-Loop Sign Algorithms for Low-Complexity Digital Predistortion
In this paper, we study digital predistortion (DPD) based linearization with specific focus on millimeter wave (mmW) active antenna arrays. Due to the very large channel bandwidths and beam-dependence of nonlinear distortion in such systems, we propose a closed-loop DPD learning architecture, look-up table (LUT) based memory DPD models, and low-complexity sign-based estimation algorithms, such that even continuous DPD learning could be technically feasible. To this end, three different learning algorithms - sign, signed regressor, and sign-sign - are formulated for the LUT-based DPD models, such that the potential rank deficiencies, experienced in earlier methods, are avoided. Then, extensive RF measurements utilizing a state-of-the-art mmW active antenna array system at 28 GHz are carried out and reported to validate the methods. Additionally, the processing and learning complexities of the considered methods are analyzed, which together with the measured linearization performance figures allow to assess the complexity-performance tradeoffs. Overall, the results show that efficient mmW array linearization can be obtained through the proposed methods.