HRVTool -一个开源的Matlab工具箱,用于分析心率变异性

M. Vollmer
{"title":"HRVTool -一个开源的Matlab工具箱,用于分析心率变异性","authors":"M. Vollmer","doi":"10.22489/cinc.2019.032","DOIUrl":null,"url":null,"abstract":"Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"HRVTool - an Open-Source Matlab Toolbox for Analyzing Heart Rate Variability\",\"authors\":\"M. Vollmer\",\"doi\":\"10.22489/cinc.2019.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.\",\"PeriodicalId\":6716,\"journal\":{\"name\":\"2019 Computing in Cardiology Conference (CinC)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2019.032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

动机:许多用于ECG处理的软件工具都是商业化的。新的创新和替代功能的心率变异性分析(HRV)和改进的方法在ECG预处理不能被纳入。此外,软件手册缺乏清晰度,经常隐藏精确的计算方法,使临床解释困难,可重复性降低。软件描述:HRVTool为Matlab中的HRV分析提供了一个开源和直观的用户友好环境。该软件可在http://marcusvollmer.github.io/HRV上获得,支持处理来自各种来源的ECG,脉冲波形和RR间隔(包含原始数据的mat和文本文件,Polar, PhysioNet, Hexoskin, BIOPAC,欧洲数据格式,ISHNE Holter标准格式和机器独立节拍文件)。集成心跳检测器定位R峰或脉搏波。目视检查和手动调整节拍位置是可能的,相应的注释文件可以保存为标准的Matlab格式或作为分隔的文本文件。在滑动窗口中计算HRV统计数据,以评估随时间的变化。HRV指标可以导出。间隔动画支持模式识别。此外,Matlab类(HRV.m)还包含了可用于批处理的窗口HRV计算函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HRVTool - an Open-Source Matlab Toolbox for Analyzing Heart Rate Variability
Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Reducing the Number of Leads from Body Surface Potential Mapping in Computer Models of Atrial Arrhythmias Autonomic Nervous System Response to Heat Stress Exposure by Means of Heart Rate Variability Automatic Emotions Assessment Using Heart Rate Variability Analysis and 2D Regression Model of Emotions A New Graphical Method for Reporting Performance Results of a Diagnostic Test A Low Dimensional Algorithm for Detection of Sepsis from Electronic Medical Record Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1