Siti Raihan Hamzah, Muhammad Afiq Rosli, Nadiah Sabihah Natar, Nureel Imanina Abdul Ghani, Nur Aien Muhamad, M. Azami, M. Ishak, R. Nordin, W. I. Nawawi
{"title":"固定化聚合物基二氧化钛在阴离子染料脱色中的光蚀刻交联和孔隙表面效应","authors":"Siti Raihan Hamzah, Muhammad Afiq Rosli, Nadiah Sabihah Natar, Nureel Imanina Abdul Ghani, Nur Aien Muhamad, M. Azami, M. Ishak, R. Nordin, W. I. Nawawi","doi":"10.3390/colorants2010006","DOIUrl":null,"url":null,"abstract":"The textile industry is suffering a great challenge regarding wastewater management, primarily due to the implementation of improper systems, specifically for dye wastewater treatment. Photocatalysis is one of approaches that have been used to treat wastewater. Titanium dioxide (TiO2) was immobilized by using the dip-coating technique in this research. Epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) were used as a polymer to bind the TiO2 on the glass substrate. This immobilized TiO2/ENR/PVC underwent a photoetching process at various times to study the crosslink and porosity formations. Reactive red 4 dye was used as a model pollutant for photocatalytic performance. All immobilized TiO2/ENR/PVC samples under 12, 24 and 30 h of photoetching process (TEP12, TEP24 and TEP30 samples, respectively) showed higher photocatalytic activity compared to those without photoetching process (TEP0 sample) due to the intermediate charge in crosslinking reaction after the photoetching process. The TEP24 sample showed the highest photocatalytic degradation; light harvesting; photocatalytic degradation.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Crosslinking and Porosity Surface Effects of Photoetching Process on Immobilized Polymer-Based Titanium Dioxide for the Decolorization of Anionic Dye\",\"authors\":\"Siti Raihan Hamzah, Muhammad Afiq Rosli, Nadiah Sabihah Natar, Nureel Imanina Abdul Ghani, Nur Aien Muhamad, M. Azami, M. Ishak, R. Nordin, W. I. Nawawi\",\"doi\":\"10.3390/colorants2010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The textile industry is suffering a great challenge regarding wastewater management, primarily due to the implementation of improper systems, specifically for dye wastewater treatment. Photocatalysis is one of approaches that have been used to treat wastewater. Titanium dioxide (TiO2) was immobilized by using the dip-coating technique in this research. Epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) were used as a polymer to bind the TiO2 on the glass substrate. This immobilized TiO2/ENR/PVC underwent a photoetching process at various times to study the crosslink and porosity formations. Reactive red 4 dye was used as a model pollutant for photocatalytic performance. All immobilized TiO2/ENR/PVC samples under 12, 24 and 30 h of photoetching process (TEP12, TEP24 and TEP30 samples, respectively) showed higher photocatalytic activity compared to those without photoetching process (TEP0 sample) due to the intermediate charge in crosslinking reaction after the photoetching process. The TEP24 sample showed the highest photocatalytic degradation; light harvesting; photocatalytic degradation.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants2010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants2010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Crosslinking and Porosity Surface Effects of Photoetching Process on Immobilized Polymer-Based Titanium Dioxide for the Decolorization of Anionic Dye
The textile industry is suffering a great challenge regarding wastewater management, primarily due to the implementation of improper systems, specifically for dye wastewater treatment. Photocatalysis is one of approaches that have been used to treat wastewater. Titanium dioxide (TiO2) was immobilized by using the dip-coating technique in this research. Epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) were used as a polymer to bind the TiO2 on the glass substrate. This immobilized TiO2/ENR/PVC underwent a photoetching process at various times to study the crosslink and porosity formations. Reactive red 4 dye was used as a model pollutant for photocatalytic performance. All immobilized TiO2/ENR/PVC samples under 12, 24 and 30 h of photoetching process (TEP12, TEP24 and TEP30 samples, respectively) showed higher photocatalytic activity compared to those without photoetching process (TEP0 sample) due to the intermediate charge in crosslinking reaction after the photoetching process. The TEP24 sample showed the highest photocatalytic degradation; light harvesting; photocatalytic degradation.