基于双线性结构化支持向量机和显式特征映射的目标跟踪

J. Ning, Jimei Yang, Shaojie Jiang, Lei Zhang, Ming-Hsuan Yang
{"title":"基于双线性结构化支持向量机和显式特征映射的目标跟踪","authors":"J. Ning, Jimei Yang, Shaojie Jiang, Lei Zhang, Ming-Hsuan Yang","doi":"10.1109/CVPR.2016.462","DOIUrl":null,"url":null,"abstract":"Structured support vector machine (SSVM) based methods have demonstrated encouraging performance in recent object tracking benchmarks. However, the complex and expensive optimization limits their deployment in real-world applications. In this paper, we present a simple yet efficient dual linear SSVM (DLSSVM) algorithm to enable fast learning and execution during tracking. By analyzing the dual variables, we propose a primal classifier update formula where the learning step size is computed in closed form. This online learning method significantly improves the robustness of the proposed linear SSVM with lower computational cost. Second, we approximate the intersection kernel for feature representations with an explicit feature map to further improve tracking performance. Finally, we extend the proposed DLSSVM tracker with multi-scale estimation to address the \"drift\" problem. Experimental results on large benchmark datasets with 50 and 100 video sequences show that the proposed DLSSVM tracking algorithm achieves state-of-the-art performance.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"21 1","pages":"4266-4274"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"225","resultStr":"{\"title\":\"Object Tracking via Dual Linear Structured SVM and Explicit Feature Map\",\"authors\":\"J. Ning, Jimei Yang, Shaojie Jiang, Lei Zhang, Ming-Hsuan Yang\",\"doi\":\"10.1109/CVPR.2016.462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured support vector machine (SSVM) based methods have demonstrated encouraging performance in recent object tracking benchmarks. However, the complex and expensive optimization limits their deployment in real-world applications. In this paper, we present a simple yet efficient dual linear SSVM (DLSSVM) algorithm to enable fast learning and execution during tracking. By analyzing the dual variables, we propose a primal classifier update formula where the learning step size is computed in closed form. This online learning method significantly improves the robustness of the proposed linear SSVM with lower computational cost. Second, we approximate the intersection kernel for feature representations with an explicit feature map to further improve tracking performance. Finally, we extend the proposed DLSSVM tracker with multi-scale estimation to address the \\\"drift\\\" problem. Experimental results on large benchmark datasets with 50 and 100 video sequences show that the proposed DLSSVM tracking algorithm achieves state-of-the-art performance.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"21 1\",\"pages\":\"4266-4274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"225\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 225

摘要

基于结构化支持向量机(SSVM)的方法在最近的目标跟踪基准测试中表现出令人鼓舞的性能。然而,复杂和昂贵的优化限制了它们在实际应用程序中的部署。在本文中,我们提出了一种简单而高效的双线性SSVM (DLSSVM)算法,以实现跟踪过程中的快速学习和执行。通过分析对偶变量,我们提出了一个原始分类器更新公式,其中学习步长以封闭形式计算。这种在线学习方法显著提高了所提出的线性SSVM的鲁棒性,且计算成本较低。其次,我们使用显式特征映射近似特征表示的交集核,以进一步提高跟踪性能。最后,我们用多尺度估计扩展了所提出的DLSSVM跟踪器,以解决“漂移”问题。在50和100个视频序列的大型基准数据集上的实验结果表明,所提出的DLSSVM跟踪算法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Tracking via Dual Linear Structured SVM and Explicit Feature Map
Structured support vector machine (SSVM) based methods have demonstrated encouraging performance in recent object tracking benchmarks. However, the complex and expensive optimization limits their deployment in real-world applications. In this paper, we present a simple yet efficient dual linear SSVM (DLSSVM) algorithm to enable fast learning and execution during tracking. By analyzing the dual variables, we propose a primal classifier update formula where the learning step size is computed in closed form. This online learning method significantly improves the robustness of the proposed linear SSVM with lower computational cost. Second, we approximate the intersection kernel for feature representations with an explicit feature map to further improve tracking performance. Finally, we extend the proposed DLSSVM tracker with multi-scale estimation to address the "drift" problem. Experimental results on large benchmark datasets with 50 and 100 video sequences show that the proposed DLSSVM tracking algorithm achieves state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1