改进的RNA-Seq划分线性模型用于异构体定量

Brian E. Howard, P. Veronese, S. Heber
{"title":"改进的RNA-Seq划分线性模型用于异构体定量","authors":"Brian E. Howard, P. Veronese, S. Heber","doi":"10.1109/BIBM.2011.102","DOIUrl":null,"url":null,"abstract":"Here, we present an extension of our is form quantification method that accommodates paired end RNA Sequencing data. We explore several alternate methods of partitioning read count data in order to better exploit the available fragment size distribution, and to reduce the variance in the resulting estimates. In many cases, this significantly improves the accuracy of our approach.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"24 1","pages":"151-154"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved RNA-Seq Partitions in Linear Models for Isoform Quantification\",\"authors\":\"Brian E. Howard, P. Veronese, S. Heber\",\"doi\":\"10.1109/BIBM.2011.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we present an extension of our is form quantification method that accommodates paired end RNA Sequencing data. We explore several alternate methods of partitioning read count data in order to better exploit the available fragment size distribution, and to reduce the variance in the resulting estimates. In many cases, this significantly improves the accuracy of our approach.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"24 1\",\"pages\":\"151-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了一种扩展我们的形式量化方法,以适应成对末端RNA测序数据。我们探索了几种分区读计数数据的替代方法,以便更好地利用可用的片段大小分布,并减少结果估计的方差。在许多情况下,这大大提高了我们的方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved RNA-Seq Partitions in Linear Models for Isoform Quantification
Here, we present an extension of our is form quantification method that accommodates paired end RNA Sequencing data. We explore several alternate methods of partitioning read count data in order to better exploit the available fragment size distribution, and to reduce the variance in the resulting estimates. In many cases, this significantly improves the accuracy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1