基于人工智能系统的软件工程:综述

Silverio Mart'inez-Fern'andez, J. Bogner, Xavier Franch, M. Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, S. Wagner
{"title":"基于人工智能系统的软件工程:综述","authors":"Silverio Mart'inez-Fern'andez, J. Bogner, Xavier Franch, M. Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, S. Wagner","doi":"10.1145/3487043","DOIUrl":null,"url":null,"abstract":"AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"32 1","pages":"1 - 59"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Software Engineering for AI-Based Systems: A Survey\",\"authors\":\"Silverio Mart'inez-Fern'andez, J. Bogner, Xavier Franch, M. Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, S. Wagner\",\"doi\":\"10.1145/3487043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.\",\"PeriodicalId\":7398,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"volume\":\"32 1\",\"pages\":\"1 - 59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

基于人工智能的系统是具有至少一个人工智能组件(例如,用于图像、语音识别和自动驾驶)的功能的软件系统。由于人工智能的进步,基于人工智能的系统在社会中变得无处不在。然而,关于构建、操作和维护基于人工智能的系统的软件工程(SE)方法的综合知识有限。为了收集和分析关于基于人工智能系统的SE的最新知识,我们进行了系统的映射研究。我们考虑了2010年1月至2020年3月期间发表的248项研究。基于人工智能系统的SE是一个新兴的研究领域,其中超过三分之二的研究是自2018年以来发表的。人工智能系统研究最多的特性是可靠性和安全性。我们为基于ai的系统确定了多种SE方法,并根据SWEBOK区域进行了分类。与软件测试和软件质量相关的研究非常普遍,而像软件维护这样的领域似乎被忽视了。与数据相关的问题是最经常出现的挑战。我们的研究结果对研究人员来说是有价值的,他们可以快速了解最新的技术,并了解哪些主题需要更多的研究;实践者,了解基于人工智能的系统所需要的方法和挑战;以及教育工作者,在他们的课程中弥合SE和AI之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software Engineering for AI-Based Systems: A Survey
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turnover of Companies in OpenStack: Prevalence and Rationale Super-optimization of Smart Contracts Verification of Programs Sensitive to Heap Layout Assessing and Improving an Evaluation Dataset for Detecting Semantic Code Clones via Deep Learning Guaranteeing Timed Opacity using Parametric Timed Model Checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1