Rouhollah Kian Ara, Andrzej Matiolański, M. Grega, A. Dziech, R. Baran
{"title":"基于卷积神经网络和改进滑动窗口策略的高效人脸检测人群密度估计","authors":"Rouhollah Kian Ara, Andrzej Matiolański, M. Grega, A. Dziech, R. Baran","doi":"10.34768/amcs-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract Counting and detecting occluded faces in a crowd is a challenging task in computer vision. In this paper, we propose a new approach to face detection-based crowd estimation under significant occlusion and head posture variations. Most state-of-the-art face detectors cannot detect excessively occluded faces. To address the problem, an improved approach to training various detectors is described. To obtain a reasonable evaluation of our solution, we trained and tested the model on our substantially occluded data set. The dataset contains images with up to 90 degrees out-of-plane rotation and faces with 25%, 50%, and 75% occlusion levels. In this study, we trained the proposed model on 48,000 images obtained from our dataset consisting of 19 crowd scenes. To evaluate the model, we used 109 images with face counts ranging from 21 to 905 and with an average of 145 individuals per image. Detecting faces in crowded scenes with the underlying challenges cannot be addressed using a single face detection method. Therefore, a robust method for counting visible faces in a crowd is proposed by combining different traditional machine learning and convolutional neural network algorithms. Utilizing a network based on the VGGNet architecture, the proposed algorithm outperforms various state-of-the-art algorithms in detecting faces ‘in-the-wild’. In addition, the performance of the proposed approach is evaluated on publicly available datasets containing in-plane/out-of-plane rotation images as well as images with various lighting changes. The proposed approach achieved similar or higher accuracy.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"160 1","pages":"7 - 20"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Face Detection Based Crowd Density Estimation using Convolutional Neural Networks and an Improved Sliding Window Strategy\",\"authors\":\"Rouhollah Kian Ara, Andrzej Matiolański, M. Grega, A. Dziech, R. Baran\",\"doi\":\"10.34768/amcs-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Counting and detecting occluded faces in a crowd is a challenging task in computer vision. In this paper, we propose a new approach to face detection-based crowd estimation under significant occlusion and head posture variations. Most state-of-the-art face detectors cannot detect excessively occluded faces. To address the problem, an improved approach to training various detectors is described. To obtain a reasonable evaluation of our solution, we trained and tested the model on our substantially occluded data set. The dataset contains images with up to 90 degrees out-of-plane rotation and faces with 25%, 50%, and 75% occlusion levels. In this study, we trained the proposed model on 48,000 images obtained from our dataset consisting of 19 crowd scenes. To evaluate the model, we used 109 images with face counts ranging from 21 to 905 and with an average of 145 individuals per image. Detecting faces in crowded scenes with the underlying challenges cannot be addressed using a single face detection method. Therefore, a robust method for counting visible faces in a crowd is proposed by combining different traditional machine learning and convolutional neural network algorithms. Utilizing a network based on the VGGNet architecture, the proposed algorithm outperforms various state-of-the-art algorithms in detecting faces ‘in-the-wild’. In addition, the performance of the proposed approach is evaluated on publicly available datasets containing in-plane/out-of-plane rotation images as well as images with various lighting changes. The proposed approach achieved similar or higher accuracy.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"160 1\",\"pages\":\"7 - 20\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Efficient Face Detection Based Crowd Density Estimation using Convolutional Neural Networks and an Improved Sliding Window Strategy
Abstract Counting and detecting occluded faces in a crowd is a challenging task in computer vision. In this paper, we propose a new approach to face detection-based crowd estimation under significant occlusion and head posture variations. Most state-of-the-art face detectors cannot detect excessively occluded faces. To address the problem, an improved approach to training various detectors is described. To obtain a reasonable evaluation of our solution, we trained and tested the model on our substantially occluded data set. The dataset contains images with up to 90 degrees out-of-plane rotation and faces with 25%, 50%, and 75% occlusion levels. In this study, we trained the proposed model on 48,000 images obtained from our dataset consisting of 19 crowd scenes. To evaluate the model, we used 109 images with face counts ranging from 21 to 905 and with an average of 145 individuals per image. Detecting faces in crowded scenes with the underlying challenges cannot be addressed using a single face detection method. Therefore, a robust method for counting visible faces in a crowd is proposed by combining different traditional machine learning and convolutional neural network algorithms. Utilizing a network based on the VGGNet architecture, the proposed algorithm outperforms various state-of-the-art algorithms in detecting faces ‘in-the-wild’. In addition, the performance of the proposed approach is evaluated on publicly available datasets containing in-plane/out-of-plane rotation images as well as images with various lighting changes. The proposed approach achieved similar or higher accuracy.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.