高维高西格玛SRAM电路的高效贝叶斯良率估计方法

Jinyuan Zhai, Changhao Yan, Sheng-Guo Wang, Dian Zhou
{"title":"高维高西格玛SRAM电路的高效贝叶斯良率估计方法","authors":"Jinyuan Zhai, Changhao Yan, Sheng-Guo Wang, Dian Zhou","doi":"10.1145/3195970.3195987","DOIUrl":null,"url":null,"abstract":"With increasing dimension of variation space and computational intensive circuit simulation, accurate and fast yield estimation of realistic SRAM chip remains a significant and complicated challenge. In this paper, du Experiment results show that the proposed method has an almost constant time complexity as the dimension increases, and gains 6× speedup over the state-of-the- art method in the 485D cases.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Efficient Bayesian Yield Estimation Method for High Dimensional and High Sigma SRAM Circuits\",\"authors\":\"Jinyuan Zhai, Changhao Yan, Sheng-Guo Wang, Dian Zhou\",\"doi\":\"10.1145/3195970.3195987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing dimension of variation space and computational intensive circuit simulation, accurate and fast yield estimation of realistic SRAM chip remains a significant and complicated challenge. In this paper, du Experiment results show that the proposed method has an almost constant time complexity as the dimension increases, and gains 6× speedup over the state-of-the- art method in the 485D cases.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3195987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着变化空间维度的增加和计算密集型电路仿真,准确快速地估计实际SRAM芯片的成品率仍然是一个重大而复杂的挑战。实验结果表明,随着维数的增加,该方法具有几乎恒定的时间复杂度,并且在485D情况下,该方法的速度比目前的方法提高了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Bayesian Yield Estimation Method for High Dimensional and High Sigma SRAM Circuits
With increasing dimension of variation space and computational intensive circuit simulation, accurate and fast yield estimation of realistic SRAM chip remains a significant and complicated challenge. In this paper, du Experiment results show that the proposed method has an almost constant time complexity as the dimension increases, and gains 6× speedup over the state-of-the- art method in the 485D cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1