矮秆和半矮秆小麦冠层下部叶片光合能力的比较研究。

IF 2.1 4区 生物学 Q2 PLANT SCIENCES Photosynthetica Pub Date : 2022-08-22 eCollection Date: 2022-01-01 DOI:10.32615/ps.2022.037
H W Li, J Zhang, Q Zheng, B Li, Z S Li
{"title":"矮秆和半矮秆小麦冠层下部叶片光合能力的比较研究。","authors":"H W Li, J Zhang, Q Zheng, B Li, Z S Li","doi":"10.32615/ps.2022.037","DOIUrl":null,"url":null,"abstract":"<p><p>Semidwarf wheat contributes to significant yield increase worldwide, however, few dwarf cultivars of wheat are cultivated due to grain yield penalty. In this study, a new dwarf wheat <i>Triticum aestivum</i> L., cv. Xiaoyan 101, was investigated to explore its photosynthetic performance and yield potential. In the comparison of the semidwarf wheat cultivars, Jing 411 and Xiaoyan 101, although the first three leaves (including flag leaves) did not differ significantly in both genotypes, Xiaoyan 101 conferred a higher content of photosynthetic pigments and higher photochemical efficiency but had lower contents of hydrogen peroxide and malondialdehyde in lower leaves in the canopy. In addition, the antioxidant enzymes-encoding genes were upregulated while the senescence-associated genes (<i>TaSAG3</i>, <i>TaSAG5</i>, <i>TaSAG7</i>, and <i>TaSAG12</i>) were downregulated in lower leaves in the canopy of Xiaoyan 101. Ultimately, Xiaoyan 101 produced approximate or even higher grain yield than the local semidwarf wheat varieties. Therefore, it is possible to breed dwarf wheat with enhanced photosynthetic activity but without yield sacrifice.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"70 1","pages":"445-456"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558582/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative study of photosynthetic capacity in lower leaves in the canopy of dwarf and semidwarf wheat.\",\"authors\":\"H W Li, J Zhang, Q Zheng, B Li, Z S Li\",\"doi\":\"10.32615/ps.2022.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semidwarf wheat contributes to significant yield increase worldwide, however, few dwarf cultivars of wheat are cultivated due to grain yield penalty. In this study, a new dwarf wheat <i>Triticum aestivum</i> L., cv. Xiaoyan 101, was investigated to explore its photosynthetic performance and yield potential. In the comparison of the semidwarf wheat cultivars, Jing 411 and Xiaoyan 101, although the first three leaves (including flag leaves) did not differ significantly in both genotypes, Xiaoyan 101 conferred a higher content of photosynthetic pigments and higher photochemical efficiency but had lower contents of hydrogen peroxide and malondialdehyde in lower leaves in the canopy. In addition, the antioxidant enzymes-encoding genes were upregulated while the senescence-associated genes (<i>TaSAG3</i>, <i>TaSAG5</i>, <i>TaSAG7</i>, and <i>TaSAG12</i>) were downregulated in lower leaves in the canopy of Xiaoyan 101. Ultimately, Xiaoyan 101 produced approximate or even higher grain yield than the local semidwarf wheat varieties. Therefore, it is possible to breed dwarf wheat with enhanced photosynthetic activity but without yield sacrifice.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"70 1\",\"pages\":\"445-456\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558582/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2022.037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

半矮秆小麦在世界范围内具有重要的增产作用,但由于籽粒减产,矮秆小麦品种很少被种植。在本研究中,矮小麦新品种Triticum aestivum L., cv。以小烟101为材料,研究其光合性能和产量潜力。半矮小麦品种粳411和小淹101的前三叶(包括旗叶)基因型差异不显著,但小淹101冠层下部叶片光合色素含量和光化学效率较高,过氧化氢和丙二醛含量较低。此外,小燕101冠层下部叶片抗氧化酶编码基因上调,衰老相关基因TaSAG3、TaSAG5、TaSAG7和TaSAG12下调。最终,小岩101的产量接近甚至高于当地的半矮秆小麦品种。因此,在不牺牲产量的情况下,培育出提高光合活性的矮小麦是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of photosynthetic capacity in lower leaves in the canopy of dwarf and semidwarf wheat.

Semidwarf wheat contributes to significant yield increase worldwide, however, few dwarf cultivars of wheat are cultivated due to grain yield penalty. In this study, a new dwarf wheat Triticum aestivum L., cv. Xiaoyan 101, was investigated to explore its photosynthetic performance and yield potential. In the comparison of the semidwarf wheat cultivars, Jing 411 and Xiaoyan 101, although the first three leaves (including flag leaves) did not differ significantly in both genotypes, Xiaoyan 101 conferred a higher content of photosynthetic pigments and higher photochemical efficiency but had lower contents of hydrogen peroxide and malondialdehyde in lower leaves in the canopy. In addition, the antioxidant enzymes-encoding genes were upregulated while the senescence-associated genes (TaSAG3, TaSAG5, TaSAG7, and TaSAG12) were downregulated in lower leaves in the canopy of Xiaoyan 101. Ultimately, Xiaoyan 101 produced approximate or even higher grain yield than the local semidwarf wheat varieties. Therefore, it is possible to breed dwarf wheat with enhanced photosynthetic activity but without yield sacrifice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
期刊最新文献
On "P750s" in cyanobacteria: A historical perspective. Impact of exogenous rhamnolipids on plant photosynthesis and biochemical parameters under prolonged heat stress. Chloroplast antioxidant reactions associated with zinc-alleviating effects on iron toxicity in wheat seedlings. Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content. Ascorbic acid is involved in melatonin-induced salinity tolerance of maize (Zea mays L.) by regulating antioxidant and photosynthetic capacities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1