{"title":"人工智能用于黑色素瘤诊断:截至2020年的已发表研究综述。","authors":"P. Tschandl","doi":"10.23736/S0392-0488.20.06753-X","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have shown unprecedented accuracy in digital image analysis, which can be harnessed for melanoma recognition through automated evaluation of clinical and dermatoscopic images. In experimental studies, modern CNN architectures perform single image analysis at the level of dermatologists and domain-experts, also for multi-class predictions including a multitude of possible diagnoses. This may not necessarily translate to good clinical performance, and reliable randomised controlled prospective clinical trials for modern CNNs are essentially missing. Weaknesses of CNNs are that limitations of available training image datasets propagate to limitations of CNN predictions, and they can not provide a reliable estimate of uncertainty. Recent research focuses on human-computer collaboration, where gains in accuracy were measured even with imperfect CNNs. With missing academic and clinical agreement on equivocal melanocytic lesions, fully automating histologic assessment of them with CNNs appear problematic, and applications in the near future are probably limited to supporting, referencing or recommendation roles.","PeriodicalId":49071,"journal":{"name":"Giornale Italiano Di Dermatologia E Venereologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence for melanoma diagnosis: a review of published studies until 2020.\",\"authors\":\"P. Tschandl\",\"doi\":\"10.23736/S0392-0488.20.06753-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) have shown unprecedented accuracy in digital image analysis, which can be harnessed for melanoma recognition through automated evaluation of clinical and dermatoscopic images. In experimental studies, modern CNN architectures perform single image analysis at the level of dermatologists and domain-experts, also for multi-class predictions including a multitude of possible diagnoses. This may not necessarily translate to good clinical performance, and reliable randomised controlled prospective clinical trials for modern CNNs are essentially missing. Weaknesses of CNNs are that limitations of available training image datasets propagate to limitations of CNN predictions, and they can not provide a reliable estimate of uncertainty. Recent research focuses on human-computer collaboration, where gains in accuracy were measured even with imperfect CNNs. With missing academic and clinical agreement on equivocal melanocytic lesions, fully automating histologic assessment of them with CNNs appear problematic, and applications in the near future are probably limited to supporting, referencing or recommendation roles.\",\"PeriodicalId\":49071,\"journal\":{\"name\":\"Giornale Italiano Di Dermatologia E Venereologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale Italiano Di Dermatologia E Venereologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23736/S0392-0488.20.06753-X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale Italiano Di Dermatologia E Venereologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/S0392-0488.20.06753-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence for melanoma diagnosis: a review of published studies until 2020.
Convolutional neural networks (CNN) have shown unprecedented accuracy in digital image analysis, which can be harnessed for melanoma recognition through automated evaluation of clinical and dermatoscopic images. In experimental studies, modern CNN architectures perform single image analysis at the level of dermatologists and domain-experts, also for multi-class predictions including a multitude of possible diagnoses. This may not necessarily translate to good clinical performance, and reliable randomised controlled prospective clinical trials for modern CNNs are essentially missing. Weaknesses of CNNs are that limitations of available training image datasets propagate to limitations of CNN predictions, and they can not provide a reliable estimate of uncertainty. Recent research focuses on human-computer collaboration, where gains in accuracy were measured even with imperfect CNNs. With missing academic and clinical agreement on equivocal melanocytic lesions, fully automating histologic assessment of them with CNNs appear problematic, and applications in the near future are probably limited to supporting, referencing or recommendation roles.
期刊介绍:
The journal Giornale Italiano di Dermatologia e Venereologia publishes scientific papers on dermatology and sexually transmitted diseases. Manuscripts may be submitted in the form of editorials, original articles, review articles, case reports, therapeutical notes, special articles and letters to the Editor.
Manuscripts are expected to comply with the instructions to authors which conform to the Uniform Requirements for Manuscripts Submitted to Biomedical Editors by the International Committee of Medical Journal Editors (www.icmje.org). Articles not conforming to international standards will not be considered for acceptance.