纳米结构矿物用作肥料:生物安全性评价

I. Degtyareva, E. Babynin, E. Prishchepenko
{"title":"纳米结构矿物用作肥料:生物安全性评价","authors":"I. Degtyareva, E. Babynin, E. Prishchepenko","doi":"10.21285/2227-2925-2022-12-3-438-446","DOIUrl":null,"url":null,"abstract":"Natural zeolites are effectively used as fertilizers, substrates, and pesticide carriers, as well as sorbents in the remediation of contaminated soils. Since nanostructured minerals exhibit unique physicochemical properties, they must be tested for toxicity and genotoxicity prior to their use in practice. The mutagenic and antimutagenic properties of a nanostructured water-zeolite suspension were first tested using two bacterial test systems: Ames test and SOS-lux test. According to the obtained data, the nanostructured water-zeolite suspension exhibits no mutagenic activity within the analyzed concentration range (0.75–400 µg/mL). In order to assess the antimutagenic activity of the nanostructured water-zeolite suspension, different types of mutagens were selected: mitomycin C, ethyl methanesulfonate, 2,4-dinitrophenylhydrazine, as well as DNA-damaging agents (ofloxacin and hydrogen peroxide). A significant antimutagenic effect of the nanostructured water-zeolite suspension at 200 μg/mL was shown against mitomycin C in the SOS-lux test (50.0% inhibition of mutagenic activity) and 2,4-dinitrophenylhydrazine in the Ames test (62.0% inhibition). For the other mutagens, a weak antimutagenic effect was observed (17.0% for ethyl methanesulfonate), while no antimutagenic effect was reported for ofloxacin and hydrogen peroxide. These differences can be attributed to the negative charge in zeolites, meaning that they can capture only positive (or neutral) molecules. Therefore, the antimutagenic effect of the nanostructured water-zeolite suspension depends on the charge of the mutagen molecule. According to the obtained results, the nanostructured water-zeolite suspension can be considered environmentally friendly, which allows it to be used for agro-industrial purposes as a fertilizer in the production of crops.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured minerals developed to be used as fertilizers: biosafety evaluation\",\"authors\":\"I. Degtyareva, E. Babynin, E. Prishchepenko\",\"doi\":\"10.21285/2227-2925-2022-12-3-438-446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural zeolites are effectively used as fertilizers, substrates, and pesticide carriers, as well as sorbents in the remediation of contaminated soils. Since nanostructured minerals exhibit unique physicochemical properties, they must be tested for toxicity and genotoxicity prior to their use in practice. The mutagenic and antimutagenic properties of a nanostructured water-zeolite suspension were first tested using two bacterial test systems: Ames test and SOS-lux test. According to the obtained data, the nanostructured water-zeolite suspension exhibits no mutagenic activity within the analyzed concentration range (0.75–400 µg/mL). In order to assess the antimutagenic activity of the nanostructured water-zeolite suspension, different types of mutagens were selected: mitomycin C, ethyl methanesulfonate, 2,4-dinitrophenylhydrazine, as well as DNA-damaging agents (ofloxacin and hydrogen peroxide). A significant antimutagenic effect of the nanostructured water-zeolite suspension at 200 μg/mL was shown against mitomycin C in the SOS-lux test (50.0% inhibition of mutagenic activity) and 2,4-dinitrophenylhydrazine in the Ames test (62.0% inhibition). For the other mutagens, a weak antimutagenic effect was observed (17.0% for ethyl methanesulfonate), while no antimutagenic effect was reported for ofloxacin and hydrogen peroxide. These differences can be attributed to the negative charge in zeolites, meaning that they can capture only positive (or neutral) molecules. Therefore, the antimutagenic effect of the nanostructured water-zeolite suspension depends on the charge of the mutagen molecule. According to the obtained results, the nanostructured water-zeolite suspension can be considered environmentally friendly, which allows it to be used for agro-industrial purposes as a fertilizer in the production of crops.\",\"PeriodicalId\":20601,\"journal\":{\"name\":\"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2227-2925-2022-12-3-438-446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2227-2925-2022-12-3-438-446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天然沸石可作为肥料、基质、农药载体和吸附剂用于污染土壤的修复。由于纳米结构矿物具有独特的物理化学性质,因此在实际使用之前必须对其进行毒性和遗传毒性测试。首先采用Ames试验和SOS-lux试验两种细菌试验系统对纳米结构水沸石悬浮液的诱变和抗诱变性能进行了测试。根据所得数据,纳米结构水沸石悬浮液在分析的浓度范围(0.75 ~ 400µg/mL)内无诱变活性。为了评估纳米结构水沸石悬浮液的抗诱变活性,选择了不同类型的诱变剂:丝裂霉素C、甲磺酸乙酯、2,4-二硝基苯肼以及dna损伤剂(氧氟沙星和过氧化氢)。纳米水沸石悬浮液在200 μg/mL浓度下对丝裂霉素C(50%)和2,4-二硝基苯肼(62.0%)的抗诱变活性均有显著的抑制作用。其他诱变剂的抗诱变作用较弱(甲磺酸乙酯的抗诱变作用为17.0%),氧氟沙星和过氧化氢的抗诱变作用未见报道。这些差异可以归因于沸石中的负电荷,这意味着它们只能捕获正(或中性)分子。因此,纳米结构水沸石悬浮液的抗诱变效果取决于诱变剂分子的电荷。根据获得的结果,纳米结构的水沸石悬浮液可以被认为是环保的,这使得它可以用于农业工业目的,作为作物生产中的肥料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanostructured minerals developed to be used as fertilizers: biosafety evaluation
Natural zeolites are effectively used as fertilizers, substrates, and pesticide carriers, as well as sorbents in the remediation of contaminated soils. Since nanostructured minerals exhibit unique physicochemical properties, they must be tested for toxicity and genotoxicity prior to their use in practice. The mutagenic and antimutagenic properties of a nanostructured water-zeolite suspension were first tested using two bacterial test systems: Ames test and SOS-lux test. According to the obtained data, the nanostructured water-zeolite suspension exhibits no mutagenic activity within the analyzed concentration range (0.75–400 µg/mL). In order to assess the antimutagenic activity of the nanostructured water-zeolite suspension, different types of mutagens were selected: mitomycin C, ethyl methanesulfonate, 2,4-dinitrophenylhydrazine, as well as DNA-damaging agents (ofloxacin and hydrogen peroxide). A significant antimutagenic effect of the nanostructured water-zeolite suspension at 200 μg/mL was shown against mitomycin C in the SOS-lux test (50.0% inhibition of mutagenic activity) and 2,4-dinitrophenylhydrazine in the Ames test (62.0% inhibition). For the other mutagens, a weak antimutagenic effect was observed (17.0% for ethyl methanesulfonate), while no antimutagenic effect was reported for ofloxacin and hydrogen peroxide. These differences can be attributed to the negative charge in zeolites, meaning that they can capture only positive (or neutral) molecules. Therefore, the antimutagenic effect of the nanostructured water-zeolite suspension depends on the charge of the mutagen molecule. According to the obtained results, the nanostructured water-zeolite suspension can be considered environmentally friendly, which allows it to be used for agro-industrial purposes as a fertilizer in the production of crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biochemical composition of zoned apple varieties growing in different agrocenoses Novel proton-conducting materials based on a polyethylene terephthalate track-etched membrane modified with an N, P-containing ionic liquid Selection of herbaceous cellulose-containing raw materials for biotechnological processing Biochemical composition of ciders from various raw materials Growth characteristics of lactic acid-producing strains using glucose syrup as a carbon source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1