基于深度自编码器的神经网络心脏单域模型降阶

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2021.aces.j.360824
R. Khan, K. Ng
{"title":"基于深度自编码器的神经网络心脏单域模型降阶","authors":"R. Khan, K. Ng","doi":"10.47037/2021.aces.j.360824","DOIUrl":null,"url":null,"abstract":"─ The numerical study of electrocardiology involves prohibitive computational costs because of its complex and nonlinear dynamics. In this paper, a lowdimensional model of the cardiac monodomain formulation has been developed by using the deep learning method. The restricted Boltzmann machine and deep autoencoder machine learning techniques have been used to approximate the cardiac tissue’s full order dynamics. The proposed reduced order modeling begins with the development of the low-dimensional representations of the original system by implementing the neural networks from the numerical simulations of the full order monodomain system. Consequently, the reduced order representations have been utilized to construct the lower-dimensional model, and finally, it has been reconstructed back to the original system. Numerical results show that, the proposed deep learning MOR framework gained computational efficiency by a factor of 85 with acceptable accuracy. This paper compares the accuracy of the deep learning based model order reduction method with the two different techniques of model reduction: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The model order reduction deploying the deep learning method outperforms the POD and DMD concerning the modeling accuracy. Index Term ─ Autoencoder, Cardiac monodomain model, deep learning technique, dynamic mode decomposition, proper orthogonal decomposition, reduced order modeling, semi-implicit scheme.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Order Reduction of Cardiac Monodomain Model using Deep Autoencoder Based Neural Networks\",\"authors\":\"R. Khan, K. Ng\",\"doi\":\"10.47037/2021.aces.j.360824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"─ The numerical study of electrocardiology involves prohibitive computational costs because of its complex and nonlinear dynamics. In this paper, a lowdimensional model of the cardiac monodomain formulation has been developed by using the deep learning method. The restricted Boltzmann machine and deep autoencoder machine learning techniques have been used to approximate the cardiac tissue’s full order dynamics. The proposed reduced order modeling begins with the development of the low-dimensional representations of the original system by implementing the neural networks from the numerical simulations of the full order monodomain system. Consequently, the reduced order representations have been utilized to construct the lower-dimensional model, and finally, it has been reconstructed back to the original system. Numerical results show that, the proposed deep learning MOR framework gained computational efficiency by a factor of 85 with acceptable accuracy. This paper compares the accuracy of the deep learning based model order reduction method with the two different techniques of model reduction: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The model order reduction deploying the deep learning method outperforms the POD and DMD concerning the modeling accuracy. Index Term ─ Autoencoder, Cardiac monodomain model, deep learning technique, dynamic mode decomposition, proper orthogonal decomposition, reduced order modeling, semi-implicit scheme.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360824\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360824","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

─心电学的数值研究因其复杂的非线性动力学而涉及令人望而却步的计算成本。本文利用深度学习方法建立了心脏单域公式的低维模型。限制玻尔兹曼机和深度自编码器机器学习技术已被用于近似心脏组织的全阶动力学。本文提出的降阶建模首先从全阶单域系统的数值模拟出发,通过实现神经网络来发展原始系统的低维表示。因此,利用降阶表示来构建低维模型,最后将其重构回原始系统。数值结果表明,所提出的深度学习MOR框架的计算效率提高了85倍,精度可以接受。本文比较了基于深度学习的模型阶约简方法与两种不同的模型约简技术:适当正交分解(POD)和动态模态分解(DMD)的精度。采用深度学习方法的模型降阶方法在建模精度上优于POD和DMD方法。索引项─自编码器、心脏单域模型、深度学习技术、动态模态分解、适当正交分解、降阶建模、半隐式方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Order Reduction of Cardiac Monodomain Model using Deep Autoencoder Based Neural Networks
─ The numerical study of electrocardiology involves prohibitive computational costs because of its complex and nonlinear dynamics. In this paper, a lowdimensional model of the cardiac monodomain formulation has been developed by using the deep learning method. The restricted Boltzmann machine and deep autoencoder machine learning techniques have been used to approximate the cardiac tissue’s full order dynamics. The proposed reduced order modeling begins with the development of the low-dimensional representations of the original system by implementing the neural networks from the numerical simulations of the full order monodomain system. Consequently, the reduced order representations have been utilized to construct the lower-dimensional model, and finally, it has been reconstructed back to the original system. Numerical results show that, the proposed deep learning MOR framework gained computational efficiency by a factor of 85 with acceptable accuracy. This paper compares the accuracy of the deep learning based model order reduction method with the two different techniques of model reduction: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The model order reduction deploying the deep learning method outperforms the POD and DMD concerning the modeling accuracy. Index Term ─ Autoencoder, Cardiac monodomain model, deep learning technique, dynamic mode decomposition, proper orthogonal decomposition, reduced order modeling, semi-implicit scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1