基于遗传算法的MRI特征提取

R. Velthuizen, L. Hall, L. Clarke
{"title":"基于遗传算法的MRI特征提取","authors":"R. Velthuizen, L. Hall, L. Clarke","doi":"10.1109/IEMBS.1996.652744","DOIUrl":null,"url":null,"abstract":"Traditional machine vision techniques apply a feature extraction step before any classification, but this is not commonly done for magnetic resonance images. In this study the authors propose to discover optimal feature extractors for MRI to increase segmentation accuracy. Genetic algorithms are applied using a fitness function based on known class labels, and on a fitness function that can be applied to data without ground truth. Both fitness functions allow the discovery of good features, that can be applied outside the data that was used for the search. An increase in the tumor true positive rate for an MRI volume using fuzzy c-means (FCM) was found from 78.7% to 91.3% of all tumor pixels with constant false negative rate. This approach may lead to significantly improved MRI segmentation, which is needed in particular for multicenter trials for brain tumor treatment.","PeriodicalId":20427,"journal":{"name":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"87 1","pages":"1138-1139 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"MRI feature extraction using genetic algorithms\",\"authors\":\"R. Velthuizen, L. Hall, L. Clarke\",\"doi\":\"10.1109/IEMBS.1996.652744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional machine vision techniques apply a feature extraction step before any classification, but this is not commonly done for magnetic resonance images. In this study the authors propose to discover optimal feature extractors for MRI to increase segmentation accuracy. Genetic algorithms are applied using a fitness function based on known class labels, and on a fitness function that can be applied to data without ground truth. Both fitness functions allow the discovery of good features, that can be applied outside the data that was used for the search. An increase in the tumor true positive rate for an MRI volume using fuzzy c-means (FCM) was found from 78.7% to 91.3% of all tumor pixels with constant false negative rate. This approach may lead to significantly improved MRI segmentation, which is needed in particular for multicenter trials for brain tumor treatment.\",\"PeriodicalId\":20427,\"journal\":{\"name\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"87 1\",\"pages\":\"1138-1139 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1996.652744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1996.652744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

传统的机器视觉技术在任何分类之前应用特征提取步骤,但这通常不用于磁共振图像。在这项研究中,作者提出了寻找最佳的MRI特征提取器,以提高分割精度。遗传算法使用基于已知类标签的适应度函数,以及可以应用于没有基础真理的数据的适应度函数来应用。这两个适应度函数都允许发现好的特征,这些特征可以应用于用于搜索的数据之外。在假阴性率恒定的情况下,使用模糊c均值(FCM)的MRI体积的肿瘤真阳性率从78.7%增加到91.3%。这种方法可能会显著改善MRI分割,这在脑肿瘤治疗的多中心试验中尤其需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI feature extraction using genetic algorithms
Traditional machine vision techniques apply a feature extraction step before any classification, but this is not commonly done for magnetic resonance images. In this study the authors propose to discover optimal feature extractors for MRI to increase segmentation accuracy. Genetic algorithms are applied using a fitness function based on known class labels, and on a fitness function that can be applied to data without ground truth. Both fitness functions allow the discovery of good features, that can be applied outside the data that was used for the search. An increase in the tumor true positive rate for an MRI volume using fuzzy c-means (FCM) was found from 78.7% to 91.3% of all tumor pixels with constant false negative rate. This approach may lead to significantly improved MRI segmentation, which is needed in particular for multicenter trials for brain tumor treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcutaneous biochemical substance monitoring based on biosensors-blood glucose and lactate Is the human arm made of tunable springs? Knowledge-based medical image registration Approaches for restoring elbow extension in tetraplegia: muscle tendon transfer and functional neuromuscular stimulation Phase plane analysis of isovolumic relaxation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1