利用计算机断层扫描分析混相气压差下可膨胀封隔器模型

R. Pounds, Chad Glaesman
{"title":"利用计算机断层扫描分析混相气压差下可膨胀封隔器模型","authors":"R. Pounds, Chad Glaesman","doi":"10.4043/29521-MS","DOIUrl":null,"url":null,"abstract":"\n The purpose of this project was to confirm the occurrence of and to characterize hydrocarbon gas diffusion through a swollen reduced-scale packer of oil swellable material. The extent and origin of extrusion at the ends of the scaled packer is a key measurement. A quantitative and qualitative analysis was performed to determine if the miscible gas mixture damaged the structure or compromised the capability of the elastomer / swellable packer to hold pressure.\n Two packers were swollen (separate fixtures) in diesel under conditions similar to downhole pressure and temperature. The test fixtures were limited to an internal pressure of 2000 psi. A 1900 psi differential pressure was applied across the two test samples using the swell fluid. A temperature of 72ºC was maintained for the test. A miscible hydrocarbon gas was then introduced (1900 psi) to one of the test samples to completely displace diesel from the high-pressure side of the test fixture. Pressure and temperature were maintained for approximately 35 days during which regular computed tomography scans were conducted to detect any changes in the density of the swellable rubber element.","PeriodicalId":10948,"journal":{"name":"Day 2 Tue, May 07, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Swellable Packer Model Under Miscible Gas Differential Pressure Utilizing Computerized Tomography Scanning\",\"authors\":\"R. Pounds, Chad Glaesman\",\"doi\":\"10.4043/29521-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The purpose of this project was to confirm the occurrence of and to characterize hydrocarbon gas diffusion through a swollen reduced-scale packer of oil swellable material. The extent and origin of extrusion at the ends of the scaled packer is a key measurement. A quantitative and qualitative analysis was performed to determine if the miscible gas mixture damaged the structure or compromised the capability of the elastomer / swellable packer to hold pressure.\\n Two packers were swollen (separate fixtures) in diesel under conditions similar to downhole pressure and temperature. The test fixtures were limited to an internal pressure of 2000 psi. A 1900 psi differential pressure was applied across the two test samples using the swell fluid. A temperature of 72ºC was maintained for the test. A miscible hydrocarbon gas was then introduced (1900 psi) to one of the test samples to completely displace diesel from the high-pressure side of the test fixture. Pressure and temperature were maintained for approximately 35 days during which regular computed tomography scans were conducted to detect any changes in the density of the swellable rubber element.\",\"PeriodicalId\":10948,\"journal\":{\"name\":\"Day 2 Tue, May 07, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, May 07, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29521-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, May 07, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29521-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目的目的是确认油气是否存在,并表征油气通过膨胀的缩小尺寸的石油膨胀材料封隔器的扩散。膨胀封隔器末端挤压的程度和来源是关键的测量指标。进行了定量和定性分析,以确定混相气体混合物是否破坏了结构或降低了弹性体/可膨胀封隔器的保压能力。在与井下压力和温度相似的条件下,两个封隔器(独立的固定装置)在柴油中膨胀。测试夹具被限制在2000psi的内部压力。使用膨胀液对两个测试样品施加1900 psi的压差。试验温度保持在72℃。然后将混相烃气体(1900 psi)引入其中一个测试样品中,以完全取代测试夹具高压侧的柴油。压力和温度保持约35天,在此期间进行定期计算机断层扫描,以检测可膨胀橡胶元件密度的任何变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing Swellable Packer Model Under Miscible Gas Differential Pressure Utilizing Computerized Tomography Scanning
The purpose of this project was to confirm the occurrence of and to characterize hydrocarbon gas diffusion through a swollen reduced-scale packer of oil swellable material. The extent and origin of extrusion at the ends of the scaled packer is a key measurement. A quantitative and qualitative analysis was performed to determine if the miscible gas mixture damaged the structure or compromised the capability of the elastomer / swellable packer to hold pressure. Two packers were swollen (separate fixtures) in diesel under conditions similar to downhole pressure and temperature. The test fixtures were limited to an internal pressure of 2000 psi. A 1900 psi differential pressure was applied across the two test samples using the swell fluid. A temperature of 72ºC was maintained for the test. A miscible hydrocarbon gas was then introduced (1900 psi) to one of the test samples to completely displace diesel from the high-pressure side of the test fixture. Pressure and temperature were maintained for approximately 35 days during which regular computed tomography scans were conducted to detect any changes in the density of the swellable rubber element.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing the New INCOSE Systems Engineering Competency Framework Using an Evidence Based Approach for Oil and Gas Companies A Machine Learning Application for Field Planning Optimization of Well Start-Up Using Integrated Well and Electrical Submersible Pump Modeling The Subsea Sand Management Challenge – What to Do with the Sand? Systems Engineering Principles to Enable Supplier-Led Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1