存在和不存在吡啶酸时胶束对d -葡萄糖铬(VI)氧化的影响:动力学研究

A. Das, S. Mondal, D. Kar, M. Das
{"title":"存在和不存在吡啶酸时胶束对d -葡萄糖铬(VI)氧化的影响:动力学研究","authors":"A. Das, S. Mondal, D. Kar, M. Das","doi":"10.1515/irm-2001-0107","DOIUrl":null,"url":null,"abstract":"Abstract The kinetics and mechanism of Cr(VI) oxidation of D-glucose in the presence and absence of picolinic acid (PA) in aqueous acid media have been carried out under the conditions, [D-glucose]T ⋟ [Cr(VI)]T at different temperatures. Under the kinetic conditions, HCrO4- has been found kinetically active in the absence of PA while in the ΡΑ-catalysed path Cr(VI)-PA complex has been established as the active oxidant. In the ΡΑ-catalysed path, Cr(VI)-PA complex receives a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition (through 2e transfer) leading to lactone (oxidised product) and Cr(IV)-PA complex. Then Cr(IV)-PA complex participates further in the oxidation of D-glucose and ultimately is converted into Cr(III)-PA complex. In the uncatalysed path, Cr(VI)-substrate ester experiences an acid catalysed redox decomposition (2e transfer) at the rate determining step. The uncatalysed path shows a second-order dependence on [H+], Both the paths show first-order dependence on [D-glucose]T and [Cr(VI)]T. The ΡΑ-catalysed path is first-order in [PA]T. These observations remain unaltered in the presence of externally added surfactants. Effect of cationic surfactant (i.e. cetylpyridinium chloride, CPC) and anionic surfactant (i.e. sodium dodecyl sulfate, SDS) on both the uncatalysed and ΡΑ-catalysed path has been studied. CPC inhibits both the uncatalysed and ΡΑ-catalysed path while SDS catalyses the reactions. The observed micellar effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. Applicability of different kinetic models, e.g. pseudo-phase ion exchange (PIE) model, Menger-Portnoy model, Piszkiewicz cooperative model, has been tested to explain the observed micellar effects. Effect of [surfactant]T on the activation parameters has been explored to rationalise the micellar effect.","PeriodicalId":8996,"journal":{"name":"BioInorganic Reaction Mechanisms","volume":"17 1","pages":"63 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Micellar Effect on Chromium(VI) Oxidation of D-Glucose in the Presence and Absence of Picolinic Acid in Aqueous Media: A Kinetic Study\",\"authors\":\"A. Das, S. Mondal, D. Kar, M. Das\",\"doi\":\"10.1515/irm-2001-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The kinetics and mechanism of Cr(VI) oxidation of D-glucose in the presence and absence of picolinic acid (PA) in aqueous acid media have been carried out under the conditions, [D-glucose]T ⋟ [Cr(VI)]T at different temperatures. Under the kinetic conditions, HCrO4- has been found kinetically active in the absence of PA while in the ΡΑ-catalysed path Cr(VI)-PA complex has been established as the active oxidant. In the ΡΑ-catalysed path, Cr(VI)-PA complex receives a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition (through 2e transfer) leading to lactone (oxidised product) and Cr(IV)-PA complex. Then Cr(IV)-PA complex participates further in the oxidation of D-glucose and ultimately is converted into Cr(III)-PA complex. In the uncatalysed path, Cr(VI)-substrate ester experiences an acid catalysed redox decomposition (2e transfer) at the rate determining step. The uncatalysed path shows a second-order dependence on [H+], Both the paths show first-order dependence on [D-glucose]T and [Cr(VI)]T. The ΡΑ-catalysed path is first-order in [PA]T. These observations remain unaltered in the presence of externally added surfactants. Effect of cationic surfactant (i.e. cetylpyridinium chloride, CPC) and anionic surfactant (i.e. sodium dodecyl sulfate, SDS) on both the uncatalysed and ΡΑ-catalysed path has been studied. CPC inhibits both the uncatalysed and ΡΑ-catalysed path while SDS catalyses the reactions. The observed micellar effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. Applicability of different kinetic models, e.g. pseudo-phase ion exchange (PIE) model, Menger-Portnoy model, Piszkiewicz cooperative model, has been tested to explain the observed micellar effects. Effect of [surfactant]T on the activation parameters has been explored to rationalise the micellar effect.\",\"PeriodicalId\":8996,\"journal\":{\"name\":\"BioInorganic Reaction Mechanisms\",\"volume\":\"17 1\",\"pages\":\"63 - 74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioInorganic Reaction Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/irm-2001-0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioInorganic Reaction Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/irm-2001-0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

摘要在不同温度下[d -葡萄糖]T⋟[Cr(VI)]T条件下,研究了有吡啶酸(PA)和无吡啶酸(PA)存在时d -葡萄糖的Cr(VI)氧化动力学和机理。在动力学条件下,HCrO4-在没有PA的情况下具有动力学活性,而在ΡΑ-catalysed路径下,Cr(VI)-PA配合物被确定为活性氧化剂。在ΡΑ-catalysed路径中,Cr(VI)-PA配合物受到底物的亲核攻击,形成三元配合物,随后经历氧化还原分解(通过2e转移),产生内酯(氧化产物)和Cr(IV)-PA配合物。然后Cr(IV)-PA络合物进一步参与d -葡萄糖的氧化,最终转化为Cr(III)-PA络合物。在非催化途径中,Cr(VI)-底物酯在速率决定步骤经历酸催化氧化还原分解(2e转移)。非催化途径对[H+]有二级依赖性,两种途径对[d-葡萄糖]T和[Cr(VI)]T都有一级依赖性。ΡΑ-catalysed路径在[PA]T中是一阶的。在外部添加表面活性剂的情况下,这些观察结果保持不变。研究了阳离子表面活性剂(十六烷基氯化吡啶,CPC)和阴离子表面活性剂(十二烷基硫酸钠,SDS)对未催化和ΡΑ-catalysed路径的影响。CPC同时抑制未催化路径和ΡΑ-catalysed路径,而SDS则催化反应。考虑到表面活性剂与反应物之间的疏水和静电相互作用,可以解释所观察到的胶束效应。不同的动力学模型,如伪相离子交换(PIE)模型,Menger-Portnoy模型,Piszkiewicz合作模型,已经测试了适用性来解释观察到的胶束效应。探讨了[表面活性剂]T对活化参数的影响,以使胶束效应合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micellar Effect on Chromium(VI) Oxidation of D-Glucose in the Presence and Absence of Picolinic Acid in Aqueous Media: A Kinetic Study
Abstract The kinetics and mechanism of Cr(VI) oxidation of D-glucose in the presence and absence of picolinic acid (PA) in aqueous acid media have been carried out under the conditions, [D-glucose]T ⋟ [Cr(VI)]T at different temperatures. Under the kinetic conditions, HCrO4- has been found kinetically active in the absence of PA while in the ΡΑ-catalysed path Cr(VI)-PA complex has been established as the active oxidant. In the ΡΑ-catalysed path, Cr(VI)-PA complex receives a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition (through 2e transfer) leading to lactone (oxidised product) and Cr(IV)-PA complex. Then Cr(IV)-PA complex participates further in the oxidation of D-glucose and ultimately is converted into Cr(III)-PA complex. In the uncatalysed path, Cr(VI)-substrate ester experiences an acid catalysed redox decomposition (2e transfer) at the rate determining step. The uncatalysed path shows a second-order dependence on [H+], Both the paths show first-order dependence on [D-glucose]T and [Cr(VI)]T. The ΡΑ-catalysed path is first-order in [PA]T. These observations remain unaltered in the presence of externally added surfactants. Effect of cationic surfactant (i.e. cetylpyridinium chloride, CPC) and anionic surfactant (i.e. sodium dodecyl sulfate, SDS) on both the uncatalysed and ΡΑ-catalysed path has been studied. CPC inhibits both the uncatalysed and ΡΑ-catalysed path while SDS catalyses the reactions. The observed micellar effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. Applicability of different kinetic models, e.g. pseudo-phase ion exchange (PIE) model, Menger-Portnoy model, Piszkiewicz cooperative model, has been tested to explain the observed micellar effects. Effect of [surfactant]T on the activation parameters has been explored to rationalise the micellar effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects. The Photooxidation of Hexabromorhenate(IV) in Ethyl Bromide Oxidation of ε-Aminocaproic Acid by Bis(dihydrogentellurato)argentite(III): A Kinetics and Mechanism Study Kinetic and Mechanistic Study of the Interaction of L-cysteine and N-acetylcysteine with cis-[Pt(en)(H2O)2](ClO4)2 in Aqueous Medium Polycondensation of Silicate with Hydroxocomplexes of Some Amphoteric Elements in Aqueous Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1